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Safety-critical and mission-critical systems are often sensitive to functional degradation at the system or component level.
Such degradation dynamics are often dependent on system usage (or control input) and can lead to significant loss and
potential system failure. As such, it becomes imperative to develop control designs that are able to ensure system stability
and performance, whilst mitigating the effects of incipient degradation by modulating the control input appropriately. In
this context, this paper proposes a novel approach based on an optimal control theory framework wherein the degradation
state of the system is considered in the augmented system model, and estimated using sensor measurements. Further, it is
incorporated within the optimal control paradigm leading to control law that results in deceleration of degradation rate at
the cost of system performance whilst ensuring system stability. To that end, the speed of degradation and the state of the
system in discrete time are considered to develop a linear quadratic tracker (LQT) and regulator (LQR) over a finite horizon
in a mathematically rigorous manner. Simulation studies are performed to assess the proposed approach.
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1. Introduction
Traditional control system designs (Stengel, 1986),
(Åström and Wittenmark, 1995) focus only on the
stability and the performance without taking into
consideration the effects of aging, fatigue, and damage of
the concerned components and without minimizing the
risk of failure.
However, safety-critical systems (Knight, 2002) arise
in several application areas, such as transportation and
air-traffic control systems, space systems, nuclear plants
and automated industrial processes. The evolution of
such complex systems call for development of new
control technologies that maintain system stability
and performance specifications, and also address the
progressive incipient degradation.

In this context, recent works include approaches
such as adaptive or robust control to address issues
where the degree of failure may be unknown. In (Bole
et al., 2010), a fault adaptive control is proposed for
incipient fault modes growing to catastrophic failure
conditions. The methodology is developed for a finite
constrained optimization problem where the model

of the system and the degradation is supposed to be
known. (Zhang et al., 2022) develops a reconfiguration
control method using a multiple-model based adaptive
control. The proposed control law allows to handle
component faults while maintaining the performance
of electro-hydraulic position servo system. Moreover,
fault tolerant control design (Noura et al., 2009), (Blanke
et al., 2006) has been developed for various industrial,
mission critical and safety critical systems that operate in
closed loop, in order to compensate for fault occurrence.
In (Hamdi et al., 2021), a fault tolerant control was
introduced for delayed linear parameter varying systems
including disturbances and actuator faults.

Very recently, new methods are developed such that
useful life of critical systems can be developed. In this
context, health aware control has recently become one
of the domains where control law is designed, taking
into account the state of health (SoH) and/or Remaining
Useful Life (RUL) prognostics of critical components.
Some prominent works have proposed methods to
develop control laws that attempt to extend the RUL
of component/system such as (Lipiec et al., 2022),
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(Pour et al., 2021), (Rodriguez et al., 2018), (Salazar
et al., 2017). Also, in the framework of model predictive
control (MPC), several works were adopted to design a
controller that ensures robustness to particular failures,
thus reducing their impact on the system (Brown
et al., 2010), (Brown et al., 2021). When all the states
of a system are not measurable, it can be challenging
to design effective controllers that can maintain good
performance in the presence of these uncertainties.There
are several techniques that can be assigned to estimate
the states of systems and the degradation state such as
Kalman Filter (Durrant-Whyte, 2006) , Extended Kalman
Filter (Kanso et al., 2022), (Obando et al., 2021), (Bressel
et al., 2016). Particle filtering (Jha et al., 2016), etc. In
the framework of linear system, Kalman filtering is often
used for real-time control applications due to its low
computational complexity and convergence guarantee.
Combining Kalman Filter and linear quadratic control
(LQC) yields to Linear Quadratic Gaussian (LQG) control
(Lewis et al., 2012), (Söderström, 2002). LQG control is
used to optimize the performance of linear systems in the
presence of additive white Gaussian noise. It is widely
used in a variety of applications to maintain good control
performance in the presence of noise (Athans, 1971). The
Kalman filter is used to estimate the state of the system
based on noisy measurements, and the estimate of the
state is used to compute the optimal control input.

Incipient degradation is usually a slow-dynamic
phenomenon, hidden and often not directly measurable
using sensors. As such, incorporation of degradation
state within control design is a non-trivial task
(Söderström, 2002). Another particular challenge
that arises is that the degradation states may not be
measurable (Félix et al., 2022). Thus, it can be difficult to
accurately assess the extent of degradation and to design
controllers that can adapt to changing degradation levels
over time or decelerate its speed.
Most of the existing work take into account fault
tolerance within the control design without addressing
the incipient functional degradation phenomena that
leads to such faults and consequently, system failure.
On the other hand, very few works have addressed the
problem emanating due to degradation that is often not
measurable and incipient in nature. In this context, this
paper proposes a novel approach based in optimal control
theory framework wherein the degradation state of the
system is considered in the augmented system model,
and estimated using sensor measurements. Further, it is
incorporated within optimal control paradigm leading to
control law that results in deceleration of degradation rate
at the cost of system performance whilst insuring system
stability.

This works is an extension of the previous work
(Kanso et al., 2023),wherein a linear quadratic regulator
(LQR) and tracker (LQT) was designed for deterministic
discrete-time linear system in the presence of a linear
degradation, and the full information of the state and the
degradation was considered available.
This paper aims to extend the previous work and address
the cases of incomplete states information thereby
addressing the stochastic systems using LQG control.
The main scientific contribution is the proposition of a
novel degradation tolerant approach based on optimal
control theory for a stochastic discrete-time linear system
with partially measurable states and degradation.

This paper is organized as follows. Section 2
introduces the problem statement. Section 3 presents
the proposed reconfiguration approach for deterministic
systems. Section 4 develops the LQG control for
incomplete state information. Section 5 examines the
feasibility of the proposed approach using an academic
example. Finally, the conclusion summarizes the
significant advances and presents the future perspectives.

2. Problem Formulation
The degradation of system’s components affects the
performance and the stability of the system. The state
of degradation or deterioration, considered as a health
indicator, as well affects directly the remaining useful life
of the active system, consequently reducing the usability
and the productivity of the system. Moreover, the state of
health (SoH) is is predominantly influenced by the states
of the system, and implicitly affected by the action of the
controller. As such, development of an optimal approach
for performing a control action that takes into account
the performance requirements, the stability and also the
SoH of the system gains paramount importance for such
systems undergoing components degradation.

This paper focuses on linear MIMO (Multiple Inputs
Multiple Outputs) discrete-time systems represented by
the state transition, control and observation matrices, A1

∈ Rn×n, A2 ∈ Rn×l, B1 ∈ Rn×m and C1 ∈ Rp×n.

xk+1 = A1xk +A2dk +B1uk (1)

yk = C1xk (2)

where u ∈ Rm, x ∈ Rn, d ∈ Rl and y ∈ Rp correspond
respectively to the input, state of the system, state of
degradation and measurement vectors. The system is
affected by the degradation in an affine manner and
the degradation evolution is described by the following
state-space representation:

dk+1 = A3xk +A4dk (3)
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with A3 ∈ Rl×n and A4 ∈ Rl×l. In most cases, the
evolution of the degradation is monotonic and irreversible,
moreover, it is generally unknown. In this work, the
current state of degradation is assumed to be dependent
on the previous state of degradation and also the previous
state of the system.
In order to maintain the performance of the system while
minimizing the energy and the speed of evolution of
degradation, a quadratic utility function is defined by:

Uk = (C1xk−rk)
TQ(C1xk−rk)+uT

kRuk+∆dTkQ1∆dk
(4)

where rk is the desired reference trajectory and ∆dk is the
rate of evolution of degradation described by(5).

∆dk = dk+1 − dk = (A4 − I)dk +A3xk (5)

The utility function (4) is used to develop the performance
index of a linear quadratic tracker problem, which gives
the following quadratic cost function :

J0 =
1

2
[(C1xN −rN )T S̄N (C1xN −rN )+∆dTN P̄N∆dN ]

+
1

2

N−1∑
k=0

[(C1xk − rk)
TQ(C1xk − rk) + uT

kRuk

+∆dTkQ1∆dk]

(6)

Q, Q1, R, S̄N and P̄N are symmetric positive definite
cost-weighting matrices and |R|̸= 0. The initial plant and
degradation state are given as x0 and d0 respectively.

In the following section, the control problem will be
addressed for the case of deterministic system while
minimizing the rate of evolution of degradation.

3. Optimal Reconfiguration Control of
Deterministic Systems

In this section, an optimal control based approach is
developed that allows the synthesis of a state feedback
control law using the minimization of a quadratic criterion
involving the state, the control and the rate of evolution of
degradation. The problem posed is to bring the state to any
reference track. This problem is equivalent to bringing
the state to the equilibrium (zero) starting from a non-zero
initial condition. Hence, in section 3.1, the solution of the
problem is developed for a LQT, and then the solution is
deduced for a LQR problem. The constructed controller
is for deterministic systems with fully measurable states

3.1. Linear Quadratic Tracker . This section
synthesizes an optimal control law that forces the system
to track a desired reference trajectory rk over a specified
time interval [0, N ]. The cost function (6) is sensitive to

the tracking error, the input, and ∆d to force the state
to reach the reference and to decelerate the speed of
evolution of degradation. Using (5) to eliminate ∆d in
(6) gives:

J0 =
1

2
[xT

N (CT S̄NC +AT
3 P̄NA3)xN

+ dTN (A4− I)T P̄N (A4 − I)dN + rTN S̄NrN

− xT
NCT S̄NrN − rTN S̄NCxN

+dTN (A4−I)T P̄NA3xN +xT
NAT

3 P̄N (A4−I)dN ]

+
1

2

N−1∑
k=0

[xT
k (C

TQC +AT
3 Q1A3)xk + uT

kRuk

+ dTk (A4− I)TQ1(A4 − I)dk + rTk Qrk

− xT
kC

TQrk − rTk QCxk + dTk (A4 − I)TQ1A3xk

+ xT
kA

T
3 Q1(A4 − I)dk]

(7)

To solve the LQT problem, the Hamiltonian is first
considered in order to derive the necessary conditions.
The Hamiltonian function is defined by the following
equation:

Hk =
1

2
[xT

k (C
T
1 QC1 +AT

3 Q1A3)xk + uT
kRuk

+ dTk (A4− I)TQ1(A4 − I)dk + rTk Qrk

− xT
kC

T
1 Qrk − rTk QC1xk

+ dTk (A4 − I)TQ1A3xk + xT
kA

T
3 Q1(A4 − I)dk]

+ λk+1[A1xk +A2dk +B1uk]

(8)

where λk ∈ Rn is the costate of the system and it’s given
by:

(9)
λk =

∂Hk

∂xk

= (CT
1 QC1 +AT

3 Q1A3)xk +AT
1 λk+1

+AT
3 Q1(A4 − I)dk − CT

1 Qrk

Solving the stationarity condition ∂Hk

∂uk
= 0, yields to:

uk = −R−1BT
1 λk+1 (10)

If the optimal λk can be found, 10 can be used to find
the optimal control. Moreover, the boundary condition is
given by:

(11)
λN =

∂ΦN

∂xN

= (CT
1 S̄NC1 +AT

3 P̄NA3)xN

+AT
3 P̄N (A4 − I)dN − CT

1 S̄NrN
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with

ΦN =
1

2
[xT

N (CT
1 S̄NC1 +AT

3 P̄NA3)xN

+ dTN (A4− I)T P̄N (A4 − I)dN + rTN S̄NrN

− xT
NCT

1 S̄NrN − rTN S̄NC1xN

+dTN (A4−I)T P̄NA3xN+xT
NAT

3 P̄N (A4−I)dN ]

(12)

Thus, assuming that a linear relation like (11) holds for all
times k ≤ N , the costate equation can be written as:

λk = Skxk + Pkdk − qk (13)

Using (13) in the state equation (1) to get:

(14)

xk+1 = (I +B1R
−1B1TSk+1)

−1[(A1

−B1R
−1BT

1 Pk+1A3)xk

+ (A2 −B1R
−1BT

1 Pk+1A4)dk

+B1R
−1BT

1 qk+1]

Using (14) and (13) in the costate equation (9) gives

Skxk + Pkdk − qk

= [CT
1 QC1 +AT

3 Q1A3]xk +AT
1 Sk+1[I

+B1R
−1BT

1 Sk+1]
−1[A1 −B1R

−1BT
1 Pk+1A3]xk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1[A2

−B1R
−1BT

1 Pk+1A4]dk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1B1R
−1BT

1 qk+1

+AT
1 Pk+1A4dk +AT

1 Pk+1A3xk

+AT
3 Q1(A4 − I)dk −A1qk+1 − CT

1 Qrk

(15)

This equation must hold for all state sequences xk and dk
given any x0 and d0, leading to:

(16)
Sk = CT

1 QC1 +AT
3 Q1A3

+AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1(A1

−B1R
−1BT

1 Pk+1A3) +AT
1 Pk+1A3

(17)
Pk = AT

1 Sk+1(I +B1R
−1BT

1 Sk+1)
−1(A2

−B1R
−1BT

1 Pk+1A4)

+AT
1 Pk+1A4 +AT

3 Q1(A4 − I)

(18)qk = AT
1 qk+1 + CT

1 Qrk −AT
1 Sk+1(I

+B1R
−1BT

1 Sk+1)
−1B1R

−1BT
1 qk+1

By comparing (11) and (13), the boundary conditions for
these recursions are:

SN = CT
1 S̄NC1 +AT

3 P̄NA3

PN = AT
3 P̄N (A4 − I)

vN = −CT
1 S̄NrN

(19)

Since the sequences Sk, Pk and qk can be computed,
assumption (13) is valid, and the optimal control is:

uk = −R−1BT
1 (Sk+1xk+1 + Pk+1dk+1 − qk+1) (20)

Substituting (1) and (3) in (20) yields to:

uk = −Kx
kxk −Kd

kdk +Kq
kqk+1 (21)

with

Kx
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A1 + Pk+1A3)

(22)

Kd
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A2 + Pk+1A4)

(23)

Kq
k = (R+BT

1 Sk+1B1)
−1BT (24)

Equations (22), (23) and (24) are solved offline and
backwards in time, starting from time N → 0.

The solution for the LQR is reached by determining
the control sequence u0, u1, ...,uN−1 that minimizes J0 in
(25).

(25)
J0 =

1

2
(xT

N S̄NxN +∆dTN P̄N∆dN )

+
1

2

N−1∑
k=0

xT
kQxk + uT

kRuk +∆dTkQ1∆dk

However, the regulation problem is nothing but a tracking
problem where the reference is the equilibrium (zero).
Thus, in this case qN = 0, which implies that the optimal
control takes the form:

uk = −Kx
kxk −Kd

kdk (26)

where Kx
k and Kd

k are computed using equations (22) and
(23) respectively.

The controllers in (21) and (26) are a full state
and degradation feedback, so they require a complete
information of the states and the degradation. In many
real-world systems, it is not possible to measure all
of the states directly and especially the degradation
state. This can be due to a variety of factors, such as
the complexity of the system, the cost or difficulty of
obtaining measurements, or the inherent limitations of the
measurement devices. As a result, it is often necessary to
estimate the states of the system based on partial or noisy
measurements, using techniques such as Kalman filtering.
In the following section, the control problem of stochastic
linear systems with incomplete state information will be
addressed.
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Fig. 1. Regulator design using state feedback and Kalman Filter as observer.

4. Optimal Control with Incomplete State
Information

In the previous section, the system was assumed to be is
exactly known and that there is no modeling inaccuracies,
disturbances, or noises. In control design, all states
are not often available for feedback purposes, only
measurements are accessible, this can be due to various
factors, such as the cost or complexity of measurement,
the limitations of available sensors. In this section, an
incomplete state information is assumed to be available
and the measurements are considered noisy. To solve this
problem, Kalman filter observer will be used to estimate
the state and the degradation from noisy measurements.
LQT control combined with Kalman Filter constitute
together the Linear Quadratic Gaussian (LQG) control.
This latter provide a powerful method for controlling
linear systems in the presence of noise.

Suppose the following systems described by the
stochastic dynamical equations:

xk+1 = A1xk +A2dk +B1uk + w1,k

dk+1 = A3xk +A4dk + w2,k

yk = C1xk + vk

(27)

The signals w1,k and w2,k are unknown process noise
that acts to disturb respectively the dynamical system
and the degradation, and it could represent unmodeled
high-frequency plant dynamics,or the effects of wind
gusts for instance. The signal vk is an unknown
measurement noise that impair the measurements and it
represent sensor’s noise. The signals w1,k, w2,k and vk
are uncorrelated.
Consider the following augmented system composed of
the dynamical system and the degradation with Xk =[
xk dk

]T ∈ Rn+l and Uk = uk:

Xk+1 = AXk +BUk + wk

Yk = CXk + vk
(28)

where A =

[
A1 A2
A3 A4

]
, B =

[
B1
0

]
, C =

[
C1 0

]
and wk =

[
w1,k

w2,k

]
. wk ∼ (0, Qobs), vk ∼ (0, Robs) are

white noise processes orthogonal to each other.
Suppose that the full state-feedback control:

(29)uk = −Kx
kxk −Kd

kdk +Kq
kqk+1

= −KX
k Xk +Kq

kqk+1

with KX
k =

[
Kx

k Kd
k

]
, the same feedback vector is used

as when the system was deterministic and the states were
known (Stengel, 1986).
The closed-loop system become:

Xk+1 = (A−BKX
k )Xk +BKq

kqk+1 + wk. (30)

The control law (29) cannot be implemented because not
all the states are usually measurable. Now, consider a
Kalman filter designed as:

X̂k+1 = (A− Lk+1C)X̂k +BUk + Lk+1Yk (31)

where the filter gain Lk+1 is obtained using the Kalman
Filter algorithm (Durrant-Whyte, 2006).
The feedback of the estimate X̂k is used instead of the
actual state Xk. Hence, the feedback control law becomes

uk = −KX
k X̂k +Kq

kqk+1 (32)

The closed-loop structure using this controller is
illustrated in Fig. 1.
The state feedback gains and the observer gain can
be developed separately to obtain the desired observer
behavior and closed-loop plant behavior. This leads to
the separation theorem (Lewis et al., 2012), which is
the core of the modern control design. To verify the
effectiveness of the developed control schemes, a finite
horizon tracker is implemented on an academic example
in the next section.
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Fig. 2. Trajectory of estimated and real states and degradation in closed loop: x1,k, x̂1,k and measurement yk (a), the second state
x2,k, x̂2,k and the degradation dk and d̂k (b).

0 20 40 60 80 100 120

Sample Time

0

0.5

1

1.5
P

1

P
2

0 20 40 60 80 100 120

Sample Time

0

1

2

3

4
104

S
11

S
21

S
12

S
22

0 20 40 60 80 100 120

Sample Time

0

5

10 Kx
1

Kx
2

0 20 40 60 80 100 120

Sample Time

0.1

0.1001

0.1002
Kd

0 20 40 60 80 100 120

Sample Time

0

0.5

1
10

-3

Kq

(a) (b)

Fig. 3. Convergence of Sk, Pk , Kx
k , Kd

k and Kq
k : evolution of matrices Pk and Sk with respect to time (a), evolution of the controller

gains Kx
k , Kd

k and Kq
k with respect to time (b).

5. Simulation Results
Consider the following unstable stochastic discrete-time
linear system :

xk+1 =

[
0 6.3
0.6 2

]
xk +

[
1
0

]
uk + 0.1dk + w1,k

yk =
[
1 0

]
xk + vk

The dynamic of evolution of degradation is described by
the following equation:

dk+1 =
[
2× 10−3 0

]
xk + dk + w2,k

The weighting matrices of the tracker are chosen as:

Q =

[
103 0
0 103

]
; Q1 = 103; R = 0.01

and S̄N = Q ; P̄N = Q1

The augmented system is given by:

Xk+1 =

 0 6.3 0.1
0.6 2 0

2× 103 0 1

Xk +

10
0

Uk + wk

yk =
[
1 0 0

]
Xk + vk

The first step in the Kalman Filter algorithm is to initialize
the states and to adjust the covariance matrices to make the
filter work properly. The noises wk and vk are assumed to
be Gaussian with zero mean and variances Qobs and Robs

respectively with:

Qobs =

σ2
w1

0 0
0 σ2

w1
0

0 0 σ2
w2

 and Robs = σ2
v
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Fig. 4. Performance of the system and the degradation for different values of Q1: output of the system (a), control input of the system
(b), the degradation (c) and the rate of evolution of degradation (d).

where σw1 = 6 × 10−4, σw2 = 3 × 10−4 and
σv = 3× 10−3.

Fig. 2a shows the trajectory of x1,k, x̂1,k and the
measurements yk for N = 120. A strong correlation
is observed between the three curves, which implies that
the Kalman Filter is able to estimate x1 since x̂1 and the
measured values are overlapped. Moreover, the output yk
tracks the reference rk. This indicates that the controller
is able to force the output yk to reach the desired trajectory
and to stabilise the system while using the estimated state
feedback.
Consistent results are obtained in Fig. 2b since the
trajectory of x2,k and x̂2,k coincide. The second graph
in Fig 2b shows the evolution of the estimated and the real
value of the degradation in closed loop, the two curves are
correlated with a small error between dk and d̂k.
Fig. 3a displays the evolution of the matrices Pk and Sk

which form respectively the solution of equations (17) and
(16). The values are computed offline backward in time
from N to 0. It can be seen from these two figures that the

matrices parameters converge respectively to P0 and S0,
for any SN and PN , when k approaches to 0.
Similar performance is obtained in Fig. 3b, which is
reasonable, as Kx

k ,Kd
k and Kq

k are computed with respect
to Pk+1 and Sk+1 (22-24). As N → ∞, Pk and Sk

converge to P∞ and S∞ , which implies that Kx
k , Kd

k and
Kq

k reach steady-state values Kx
∞, Kd

∞ and Kq
∞.

Thus, in this case, the optimal control can be written as
follow:

uk = −Kx
∞xk −Kd

∞dk +Kq
∞qk+1

A disadvantage of this formulation is that qk needs to be
computed offline using the backward recursion (18).

The main objective of the developed work is to decelerate
the speed of evolution of degradation ∆dk. Looking at
eq. (6), it can be seen that the weighting matrix Q1 is
strongly affecting the progression of the degradation.
Thus, the impact of Q1 on the system behaviour will be
studied in the following results.
For different value of Q1 =[103, 109,5 × 109] and for
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a finite horizon N = 120, the trajectory of the output
yk is represented in Fig. 4a. It can be seen that by
increasing the value of Q1, the steady state error between
the output and the reference increases, thus the input
uk reduces in its turn as shown in Fig. 4b. Moreover,
Fig. 4c displays the evolution of the degradation for
different values of Q1. It shows that the final value of
the degradation dN decreases when Q1 increases. This
means that the controller tries to obtain a trad-off between
the performance and the speed of degradation. As such by
augmenting the value of Q1, the controller will prioritize
reducing the rate of evolution of degradation over the
performance of the system.
Fig. 4d shows consistent results with the previous one,
it displays the rate of evolution of the degradation for
different Q1 and it confirms that the speed of degradation
is slower when Q1 is large.

6. Conclusions and Perspectives
This paper proposes a degradation tolerant control (DTC)
design based on LQG approach, where the degradation
is hidden. A finite horizon optimization approach is
developed for linear systems, where this latter was
supposed to be affected by a linear degradation in an
affine manner. The degradation and the state of system
are considered not fully measurable. Thus, Kalman Filter
is employed to estimate the states of the systems and the
degradation in order to perform the state feedback control.
It allows a fast estimation with a negligible residue, using
noisy measurements. Moreover, using the output of the
observer, LQT was able to force the measured state to
follow the reference and to stabilise it. In order to slow
down the speed of degradation, the value of the matrix Q1

can be increased so that the controller prioritize reducing
the rate of evolution of degradation over the performance
of the system, thus preventing the system’s breakdown.

The convergence’s proof of the gains Kx
k , Kd

k and
Kq

k , as well as the matrices Pk+1 and Sk+1 needs to be
investigated, therefore future work will focus on proving
the convergence of the controller gains. Furthermore, the
integration of remaining useful life in the cost function to
extend its value will also be examined.
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