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Université de Lorraine
France.

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Part IV



2/49

Temporal Difference Function Approximation RL: Nonlinear Discrete Time References

Table of Contents

1 Temporal Difference

2 Function Approximation

3 RL: Nonlinear Discrete Time
Forward in time Learning
Neural network based approximation

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Part IV



3/49

Temporal Difference Function Approximation RL: Nonlinear Discrete Time References

Table of Contents

1 Temporal Difference

2 Function Approximation

3 RL: Nonlinear Discrete Time
Forward in time Learning
Neural network based approximation

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Part IV



4/49

Temporal Difference Function Approximation RL: Nonlinear Discrete Time References

Introduction

• learn online the solutions to optimal control problems without
knowing the full system dynamics.

• leads to true online reinforcement learning

• control actions are improved in real time based on estimating
their value functions by observing data measured along the
system trajectories.

• based on the Bellman equation and solve Policy Evaluation
equation by using data observed along a single trajectory of
the system.

• TD learning is applicable for feedback control applications
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Learning Along System Trajectories

• Temporal difference reinforcement learning methods are based
on the Bellman equation and solve equations of PI, without
using systems dynamics knowledge, but using data observed
along a single trajectory of the system.

• Temporal difference updates the value at each time step as
observations of data are made along a trajectory.

• Periodically, the new value is used to update the policy.
Temporal difference methods are related to adaptive control in
that they adjust values and actions online in real time along
system trajectories.
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Recursive relationship for Value function, REMINDER

The value of the policy π(x , u) can be written as

V π
k (x) =Eπ {Jk | xk = x} = Eπ

{
k+T∑
i=k

γ i−k ri | xk = x

}
,

V π
k (x) =Eπ

{
rk + γ

k+T∑
i=k+1

γ i−(k+1)ri | xk = x

}
,

V π
k (x) =

∑
u

π(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV π

k+1

(
x ′
)]

V π (xk) =Eπ {rk | xk}+ γEπ {V π (xk+1) | xk}
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Temporal Difference Equation

Temporal difference reinforcement learning uses one sample path,
namely the current system trajectory, to update the value.
Value update can be replaced as:

V π (xk) = rk + γV π (xk+1)

which holds for each observed data experience set (xk , xk+1, rk) at
each time stage k. This data set consists of the current state xk ,
the observed cost incurred rk , and the next state xk+1.
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TD Equation

The temporal difference error is defined as

ek = −V π (xk) + rk + γV π (xk+1)

and the value estimate is updated to make the temporal difference
error small.

• V π (xk) may be considered as a predicted performance or
value,

• rk as the observed one-step reward,

• γV π (xk+1) as a current estimate of future.
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TD Equation
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TD Equation: Observations

• The Bellman equation can be interpreted as a consistency
equation that holds if the current estimate for the predicted
value V π (xk) is correct.

• Temporal difference methods update the predicted value
estimate V̂ π (xk) to make the temporal difference error small.

• Idea: TD application on Bellman’s equation repeatedly in
policy iteration or value iteration, then on average these
algorithms converge toward the solution of the stochastic
Bellman equation.
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Motivation

• Policy iteration and value iteration can be implemented for a
finite MDP by storing and updating lookup tables.

• For dynamical systems with infinite state and action spaces is
to approximate the value function by a suitable approximator
structure in terms of unknown parameters.

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Part IV



13/49

Temporal Difference Function Approximation RL: Nonlinear Discrete Time References

Value Function approximation

For nonlinear systems → the value function contains higher order
nonlinearities. Then, according to the Weierstrass higher order
approximation theorem, there exists a dense basis set {φi (x)} such
that

V (x) =
∞∑
i=1

wiφi (x)

=
L∑

i=1

wiφi (x) +
∞∑

i=L+1

wiφi (x) ≡ W Tϕ(x) + εL(x),

where basis vector ϕ(x) = [φ1(x)φ2(x) · · ·φL(x)] : R
n → RL and

εL(x) converges uniformly to zero as the number of terms retained
L → ∞.
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NN based approximation of Value function: CRITIC neural
Network

• Value function is sufficiently smooth over compact space
• Consider dense basis set {ϕi (x)} with basis vector

(Weierstrass Theorem):
ϕ(x) = [φ1(x)φ2(x)...φL(x)] :Rn → RL

Vπ(x) =
∑L

i=1 wiφi (x) = W Tϕ(x)
Substituting in Bellman TD equation:
ek = r(xk , πxk ) +W Tϕ(xk+1)−W Tϕ(xk)

Figure: NN based function approximation
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NN based approximation of control policy: ACTOR neural
Network

Control policy approximation: Actor neural Network
Introducing a second neural network for the control policy, known
as the actor neural network. Consider a parametric approximator
structure for the control action

uk = π (xk) = UTσ (xk) ,

with σ(x) : Rn → RM being a vector of M activation functions and
U ∈ RM×m being a matrix of weights or unknown parameters. In
the LQR, the optimal state feedback is linear in the states so that
the basis set σ(x) can be taken as the state vector.
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RL: Discrete time optimal control

System

xk+1 = f (xk) + g(xk)u(xk) (1)

• xk ∈ Ω ⊂ Rn is the state variable vector

• Ω being a compact set

• u(xk) ∈ U ⊂ Rm is the control input vector

• f (x) is C 1 and x = 0 is an equilibrium state such that
f (0) = 0 and g(0) = 0.

Note: u(xk) will be denoted as uk .
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RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
π(·) : Rn → Rm, that defines for every state xk , a control action:

uk = π(xk) (2)

• Such mappings → feedback controllers.

• Example: linear state-variable feedback uk = π(xk) = −Kxk
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RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uk = π(xk):

J (xk , uk) =
∞∑
n=k

r(xn, un) (3)

where r(xn, un) is the utility function defined as:
r(xn, un) = xTn Qxn + uTn R un

• Q symmetric positive semi-definite matrix Q = QT ⩾ 0
• R is a symmetric positive definite matrix R = RT > 0.
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γ = 1

Special Case: γ = 1

For simplicity, γ = 1 in what follows for non-linear discrete time
case
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RL: Discrete time optimal control

Assumption: Stabilizable system

System (1) is stabilizable on the prescribed set Ω ∈ Rn .

⇒ There is a control policy u1k = π(x) such that closed loop
system xk+1 = f (xk) + g(xk)u

1
k is asymptotically stable over Ω i.e.

u1k = (u1(xk), u
1(xk+1), u

1(xk+2), ...u
1(x∞)) exists that

• that stabilises the system (1)

• associated cost J(xk , u
1
k) is finite.

U denotes the set of all admissible control inputs.
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RL: Discrete time optimal control

For a given admissible prescribed policy π(x),
the cost associated is called as it value denoted as
Vπ(xk) = J(xk , π(x))
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RL: Discrete time optimal control

Objective: Optimal Cost

To find a control policy π∗(xk) that minimizes the infinite horizon
cost function,

V ∗(xk) = min
uk∈U

∞∑
n=k

r(xn, un), ∀xk (4)

or, V ∗(xk) = min
π(·)

∞∑
n=k

r(xn, π(xn)),∀xk

Optimal policy

Optimal control policy: π∗(xk) = argmin
π(·)

∞∑
n=k

r(xn, π(xn)), ∀xk
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = π(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Vπ(xk) =
∞∑
n=k

r(xn, un),∀xk
Vπ(xk) = r(xk , uk) + Vπ(xk+1)

H(xk , uk ,Vπ) = r(xk , uk)+Vπ(xk+1)− Vπ(xk)

V ∗(xk) = min
uk∈U

(r(xk , uk) + Vπ(xk+1))
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RL: Discrete time optimal control

Bellman Principle Bellman, 1957

“An optimal policy has the property that no matter what the
previous decisions (i.e. controls) have been, the remaining
decisions must constitute an optimal policy with regard to the
state resulting from those previous decisions
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = π(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Bellman principle:
Backwards in Time!!
Optimal control (policy):

Vπ(xk) =
∞∑
n=k

r(xn, un),∀xk
Vπ(xk) = r(xk , uk) + Vπ(xk+1)

H(xk , uk ,Vπ) = r(xk , uk) +Vπ(xk+1)−Vπ(xk)

V ∗(xk) = min
uk∈U

(r(xk , uk) + Vπ(xk+1))

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = π(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Bellman principle:

Optimal control (policy):
Only data required!!

Vπ(xk) =
∞∑
n=k

r(xn, un),∀xk
Vπ(xk) = r(xk , uk) + Vπ(xk+1)

H(xk , uk ,Vπ) = r(xk , uk) +Vπ(xk+1)−Vπ(xk)

V ∗(xk) = min
uk∈U

(r(xk , uk) + Vπ(xk+1))

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))
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RL: Discrete time optimal control

Bellman principle:
(DT Hamilton-
Jacobi-Bellman
Equation)

Optimal control
(policy):

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

= min
uk∈U

(
xTk Qxk + uTk R uk + V ∗(xk+1)

)
= min

uk∈U

(
xTk Qxk + uTk R uk + V ∗(f (xk) + g(xk)uk)

)

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = u∗k = (−1/2)R−1gT (xk)
∂V ∗(xk+1)

∂xk+1
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = π(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Optimal Cost:

Bellman principle:

Optimal control (policy):

Vπ(xk) =
∞∑
n=k

r(xn, un),∀xk
Vπ(xk) = r(xk , uk) + Vπ(xk+1)

V ∗(xk) = min
uk∈U

(r(xk , uk) + Vπ(xk+1))

V ∗(xk) = min
uk∈U

(r(xk , uk) + V ∗(xk+1))

π∗(xk) = argmin
uk∈U

(r(xk , uk) + V ∗(xk+1))
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: πj(xk)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.
Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1) ; Vj+1(0) = 0

Policy Improvement
Determine an improved policy
πj+1(xk) = argmin

uk∈U
(r(xk , uk) + Vj+1(xk+1))
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: πj(xk)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.
Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1) ; Vj+1(0) = 0

Policy Improvement
Determine an improved policy
πj+1(xk) = argmin

uk∈U
(r(xk , uk) + Vj+1(xk+1))
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DT Policy Iteration

Initialization
πj(xk)
Policy Evaluation
Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1)
Policy Improvement
πj+1(xk) = argmin

uk∈U
(r(xk , uk) + Vj+1(xk+1))

When r(xk , uk) = xTk Qxk + uTk R uk ,

πj+1(xk) = (−1/2)R−1gT (xk)
∂Vj+1(xk+1)

∂xk+1
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DT Policy Iteration: Observations

• Initial policy must be stabilizing.
• Policy Iteration (Howard, 1960; Leake and Liu, 1967) ⇒

• Vj+2(xk) ≤ Vj+1(xk)

• As j → ∞:
• Vj(xk) → V ∗(xk)

• πj → π∗

• Convergence to optimal cost and thus, optimal control policy.
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DT Policy Iteration: Observations

• Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1);∀xk ∈ Ω
• value of using a given policy starting in all current states

possible.
• Several states ⇒ Significant computations!

• Called full backup (Sutton and Barto, 2018)⇒ Massive
computational load

• Bellman Eq → fixed point equation
• Given admissible policy πj ,

V i+1(xk) = r(xk , πj(xk)) + V i (xk+1) is a contraction map
• Upon iterated starting from V 0(xk), V

i (xk) → Vj+1(xk) as
i → ∞.
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DT Policy Iteration: Observations

• Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1);∀xk ∈ Ω
• value of using a given policy starting in all current states

possible.
• Several states ⇒ Significant computations!

• Called full backup (Sutton and Barto, 2018)⇒ Massive
computational load

• Bellman Eq → fixed point equation
• Given admissible policy πj ,

V i+1(xk) = r(xk , πj(xk)) + V i (xk+1) is a contraction map
• Upon iterated starting from V 0(xk), V

i (xk) → Vj+1(xk) as
i → ∞.
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Issues

• This strategy ⇒ backward in time procedure
• Good for:

• Off-line planning, Offline optimization, Offline control
synthesis.

• NOT online leanring (optimla control synthesis using real time
data measured along system trajectories.

• Exact solutions: very difficult
• Large state space
• Highly nonlinear dynamics
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Issues

• This strategy ⇒ backward in time procedure
• Good for:

• Off-line planning, Offline optimization, Offline control
synthesis.

• NOT online learning (optimal control synthesis using real time
data measured along system trajectories.
Temporal Difference (TD) or forward in time learning

• Exact solutions: very difficult
• Large state space
• Highly nonlinear dynamics

Value Function approximation (VFA): Neural Networks
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Forward in time Learning

Forward-in-time Learning

Temporal Difference Error (TD error):
ek = r(xk , πxk ) + Vπ(xk+1)− Vπ(xk)

• RHS is DT Hamiltonian

• If Bellman Eq holds, ek is zero.

• Linear in x .

• Thus, given a policy π(x), Least Square based solution at
each time k for ek = 0.
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NN based approximation

Value Function approximation (VFA): Neural Networks
• Value function is sufficiently smooth over compact space
• Consider dense basis set {ϕi (x)} with basis vector

(Weierstrass Theorem):
ϕ(x) = [φ1(x)φ2(x)...φL(x)] :Rn → RL

Vπ(x) =
∑L

i=1 wiφi (x) = W Tϕ(x)
Substituting in Bellman TD equation:
ek = r(xk , πxk ) +W Tϕ(xk+1)−W Tϕ(xk)

Figure: NN based function approximation
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Online DT Policy Iteration

Initialization Choose an initial stabilizing policy (admissible):
π0(xk)
Policy Evaluation
Vj+1(xk) = r(xk , πj(xk)) + Vj+1(xk+1)

r(xk , πxk ) = W T
j+1(ϕ(xk)− ϕ(xk+1))

Policy Improvement

πj+1(xk) = argmin
uk∈U

(
r(xk , uk) +W T

j+1(ϕ(xk+1))
)

With r(xk , uk) = xTk Qxk + uTk R uk ,
πj+1(xk) = (−1/2)R−1gT (xk)∇ϕT (xk+1)Wj+1
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Online Policy Iteration

Figure: Online PI
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Online DT Policy Iteration: Observations

• At k + 1 : observe xk , uk = πj(xk), xk+1

• Calculate r(xk , uk) One scalar Equation in
r(xk , πxk ) = W T

j+1(ϕ(xk)− ϕ(xk+1))

• Use same policy uk = πj(xk), collect L data ⇒ L equations
(!!ϕ(x) = Rn → RL).

• Determine LS based solution Ŵj+1

• Repeat till Ŵj+1 ≡ Ŵj+2 → W ∗ Apply Improved control
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Batch Least Square Approach

• Can be implemented online by standard system identification
techniques.

• Note that weight update is a scalar equation, whereas the
unknown parameter vector Wj+1 ∈ RL has L elements.
Therefore, data from multiple time steps are needed for its
solution.

• At time k + 1 we measure the previous state xk , the control
uk = πj (xk), the next state xk+1, and compute the resulting
utility r (xk , πj (xk)).

• These data result in one scalar equation.
• This procedure is repeated for subsequent times using the
same policy πj(·) until at least L equations are obtained, at
which point the least-squares solution Wj+1 can be
determined. Batch leastsquares can be used for this procedure.

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Part IV



42/49

Temporal Difference Function Approximation RL: Nonlinear Discrete Time References

Neural network based approximation

Recursive Least square approach

• Express Critic Weight update as:

W T
j+1Φ(k) ≡ W T

j+1 (ϕ (xk)− γϕ (xk+1)) = r (xk , πj (xk))

with Φ(k) ≡ (ϕ (xk)− γϕ (xk+1)) being a regression vector.
• At step j of the policy iteration algorithm, the control policy is
fixed at u = πj(x).

• Then, at each time k the data set (xk , xk+1, r (xk , πj (xk))) is
measured.

• One step of RLS is then performed.
• This procedure is repeated for subsequent times until
convergence to the parameters corresponding to the value
Vj+1(x) = W T

j+1ϕ(x).
• For RLS to converge, the regression vector
Φ(k) ≡ (ϕ (xk)− γϕ (xk+1)) must be persistently exciting.
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Online + ONPOLICY Policy Iteration

Figure: Online ON-POLICY
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures: Two time Scale!

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures
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