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Introduction

® |earn online the solutions to optimal control problems without
knowing the full system dynamics.

® |eads to true online reinforcement learning
® control actions are improved in real time based on estimating

their value functions by observing data measured along the
system trajectories.

® based on the Bellman equation and solve Policy Evaluation
equation by using data observed along a single trajectory of
the system.

® TD learning is applicable for feedback control a$|icati9.ns
UNIVERSITE b'.QAA %

DE LORRAINE

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Leal art IV



Temporal Difference n Approximation RL: Nonlinear D
[e]e] lelelele]e] [e]e

Learning Along System Trajectories

® Temporal difference reinforcement learning methods are based
on the Bellman equation and solve equations of Pl, without
using systems dynamics knowledge, but using data observed
along a single trajectory of the system.

® Temporal difference updates the value at each time step as
observations of data are made along a trajectory.

® Periodically, the new value is used to update the policy.
Temporal difference methods are related to adaptive control in
that they adjust values and actions online in real time along

system trajectories.
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Recursive relationship for Value function, REMINDER

The value of the policy 7(x, u) can be written as
K+T
Ve (x) =Ex {Jk | xx = x} = Ex {Z ¥R | X :X} :
i=k

k+T
Vi (x) =Ex {fk +y Y A = X} ;

i=k+1
VE(X) = Z W(Xa U) Z )l<lx’ [R::x’ + ’lez;l (XI)]
u x!

VT () =Er {ric | xic} + vEx {VT (1) | X}
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Temporal Difference Equation

Temporal difference reinforcement learning uses one sample path,
namely the current system trajectory, to update the value.
Value update can be replaced as:

VT (xk) = rk + V7™ (Xk+1)

which holds for each observed data experience set (xk, Xk+1, rk) at
each time stage k. This data set consists of the current state x,
the observed cost incurred ri, and the next state xjy1.
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TD Equation

The temporal difference error is defined as

ek == V7" () + rc + 7V (xet1)
and the value estimate is updated to make the temporal difference

error small.
® V7 (xx) may be considered as a predicted performance or

value,
® 1, as the observed one-step reward,
® vV7 (xk4+1) as a current estimate of future.
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TD Equation

1)  Apply Control Action

Observe the 1-Step Reward

"k
Compute Current Estimate of Future Value of Next State xy...1
YV (Xs1)
Compute Predicted Value of Current State x,
V7 (%) >
1 i
k k+1 Time

2) Update Predicted Value to Satisfy the Bellman Equation
VE (%) = ric + YV (Xes4)

3)  Improve Control Action
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TD Equation: Observations

® The Bellman equation can be interpreted as a consistency
equation that holds if the current estimate for the predicted
value V™ (xx) is correct.

® Temporal difference methods update the predicted value
estimate V7™ (xx) to make the temporal difference error small.

® |dea: TD application on Bellman's equation repeatedly in
policy iteration or value iteration, then on average these
algorithms converge toward the solution of the stochastic
Bellman equation.
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Motivation

® Policy iteration and value iteration can be implemented for a
finite MDP by storing and updating lookup tables.

® For dynamical systems with infinite state and action spaces is
to approximate the value function by a suitable approximator
structure in terms of unknown parameters.
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Value Function approximation

For nonlinear systems — the value function contains higher order
nonlinearities. Then, according to the Weierstrass higher order
approximation theorem, there exists a dense basis set {¢;(x)} such
that

V(x) = wipi(x)
i=1

L )
=Y wipi(x)+ Y wiwi(x) = WT(x) +er(x),
i=1 i=L+1

where basis vector ¢(x) = [p1(x)@a(x) - - oL (x)] : R” — R and
e1(x) converges uniformly to zero as the number of Qe LRA %

L — 0.
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NN based approximation of Value function: CRITIC neural
Network

® Value function is sufficiently smooth over compact space

¢ Consider dense basis set {¢;(x)} with basis vector
(Weierstrass Theorem):
$(x) = [p1(x)p2(x)-..oL(x)] R" — R

|
Vr(x) = Sy wigi(x) = WTe(x)
Substituting in Bellman TD equation:
ek = r(xk, T ) + WTd(xir1) = W7o (x)

A simple neural network

input  hidden  output
layer  layer  layer
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NN based approximation of control policy: ACTOR neural
Network

Control policy approximation: Actor neural Network
Introducing a second neural network for the control policy, known
as the actor neural network. Consider a parametric approximator
structure for the control action

ue=m(x) = UTo (xx),

with o(x) : R" — RM being a vector of M activation functions and

U € RMX™ being a matrix of weights or unknown parameters. In

the LQR, the optimal state feedback is linear in the states so that

the basis set o(x) can be taken as the state vector. @us (AN %
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Xk+1 = f(Xk) = g(xk)u(xk) (1)

X, € Q C R" is the state variable vector

Q being a compact set

u(xx) € U C R™ is the control input vector

f(x) is C! and x = 0 is an equilibrium state such that
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RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
7(-) : R" — R™, that defines for every state xx , a control action:

ux = m(xx) (2)

® Such mappings — feedback controllers.

® Example: linear state-variable feedback uy = m(xx) = —Kxk
@ (AN %

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Leal art IV



Approximation RL: Nonlinear Discrete Time References
000000000000 0000000

RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uy = m(xk):

NE

J (X, ug) = r(%n, Un) (3)

n=k

where r(xp, up) is the utility function defined as:
r(Xn, tn) = X Qxy + ul R uy

® @ symmetric positive semi-definite matrix Q = @Zu—%:@ ((RA,\ @

® R is a symmetric positive definite matrix R = R" > 0.
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Special Case: y=1

For simplicity, v = 1 in what follows for non-linear discrete time
case
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RL: Discrete time optimal control

Assumption: Stabilizable system

System (1) is stabilizable on the prescribed set Q2 € R" .

= There is a control policy ul = 7(x) such that closed loop

system xx11 = f(xk) + g(xk)u} is asymptotically stable over Q i.e.
up = (ut(xk), vt (xkr1), Ut (xk12), Ut (X0 )) exists that

e that stabilises the system (1)
® associated cost J(xk, ut) is finite.

U denotes the set of all admissible control inputs.
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RL: Discrete time optimal control

For a given admissible prescribed policy 7(x),
the cost associated is called as it value denoted as

Vi () = J(xi, m(x))
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Objective: Optimal Cost

To find a control policy 7*(xx) that minimizes the infinite horizon
cost function,

V() = min Y r(xn, un), Y (4)

or, V*() = min S F (s (%)), Ve

Optimal policy
o0
Optimal control policy: 7*(xx) = argmin > r(xn, 7(xn)), Vxk %

w(-) n=k
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RL: Discrete time optimal control

Cost (given a prescribed 00

policy ux = m(xk)) Vi (xk) = HZ::I( r(Xn, Un), Vxk

_ Vi (xk) = r(xk, uk) + Vir(xk41)
Bellman Eq/ Nonlinear

Lyapunov Eq (Recursive): H(xi, ug, Vie) = (i, u) + Vi (x1) — Vi (x0)
Hamiltonian:

V*(xk) = min (r(xk, ux) + Vir(xk+1))
Optimal Cost: ucel "
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RL: Discrete time optimal control

Bellman Principle Bellma

“An optimal policy has the property that no matter what the
previous decisions (i.e. controls) have been, the remaining
decisions must constitute an optimal policy with regard to the
state resulting from those previous decisions
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RL: Discrete time optimal control

Cost (given a prescribed o0

policy ux = 7(x«)) Vi (xi) = nz::k r(Xn, Un), Vi

Vi (xk) = r(xi, uk) + Vi (xk+1)
Bellman Eq, Nonlinear " "

Lyapunov Eq (Recursive): H(xk, uk, Vi) = r(xi, i) + Vie(xar1) — Vie (i)
Hamiltonian:

V*(xk) = min (r(xq, uk) + Vr(xk41))

Optimal Cost: uel
Bellman principle: V¥ (xi) = JI‘G”Z/ (r(xk, uk) + V¥ (xk+1))

Backwards in Time!!

Optimal control (policy): ™ (xk) = arg min (r(xx, uk)au%:%)q\(ﬁ&\ %
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RL: Discrete time optimal control

Cost (given a prescribed o0

policy ux = m(xk)) V(%) = ngk r(Xn, Un), Vxk

_ Vi (xk) = r(xi, uk) + Va(xky1)
Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive): H(xk, ug, Vi) = r(xic, tie) + Vi (k1) — Vi (xc)
Hamiltonian:

V*(xx) = min (r(xg, ug) + Vi(Xeg1
Optimal Cost: () uel (r ) (1))

Bellman principle: V*(xk) = J:‘e'r(‘j (r(xk, uk) + V*(xk41))

Optimal control (policy):  7*(xx) = arg min (r(xx, Uk)@%i{&@é&\ %

Only data required!! uel DE LORRAIN
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RL: Discrete time optimal control

V¥ (xk) = UTE'?J (r(xis uk) + V*(xk41))

= min (kaka + ukTR ug + V*(ka))

Bellman principle: ueU

(DT Hamilton-

Jacobi-Bellman = min (x] Qxk + u] R ux + V*(f(xk) + g(xk) uk))
Equation) ey

Optimal control . _
: m*(xk) = argmin (r(xg, ux) + V*(x
(policy): () ugkeu (r(xk, uk) (Xk+1))
OV (k1)

™ () = uf = (=1/2)R71g T (xx) o
O (AN %
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RL: Discrete time optimal control

Cost (given a prescribed
policy Uy = 7T(Xk)) VW(Xk) — i r(x,,, Un),VXk

n=k
Bellman Eq/ Nonlinear Vi (xi) = r(xe, uk) + Va(xkt1)
Lyapunov Eq (Recursive):

Optimal Cost: V*(xk) = min (r(xk, uk) + Vi (x+1))

V*(Xk) = min (I’(Xk, uk) + V*(Xk+1))
Bellman principle: ugelU

™ (xk) = arg min (r(xx, uk) + V*(xk+1))

Optimal control (policy): oy
O (AN %
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: 7;(x)
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: 7;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Egq.

Vit (xi) = r(xi mi(xi)) + Vit (xit1) 5 Vig1(0) =0
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DT Policy Iteration

Initialization
Select any stabilizing /admissible control policy: 7;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Egq.

Vit (xi) = r(xi mi(xi)) + Vit (xit1) 5 Vig1(0) =0

Policy Improvement

Determine an improved policy ezt [
. @ DE LORRAINE ?AA
71 a) = argmin (r(xe, uk) + Vi1 (Xies1))
u.clU
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DT Policy Iteration

Initialization

mj (k)

Policy Evaluation

Vi1 (xi) = r(xi mi(xi)) + Vi (xet1)
Policy Improvement

Tit1(xk) = arg ”zjin (r(xk; uk) + Vig1(xi+1))
uge

When r(xg, ux) = x,;erk + u,Z-R Uy,

UNIVERSITE (
_ 8 V @ DE LORRAINE ?AA
mir1(x) = (=1/2)R lgT(Xk)w %
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DT Policy lteration: Observations

Initial policy must be stabilizing.
Policy Iteration (Howard, 1960; Leake and Liu, 1967) =

* Via(x) < Visa(x)

® As j — oo:
* Vi) = V*(x)
e 1 ="

[ ]

Convergence to optimal cost and thus, optimal control policy.
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DT Policy lteration: Observations

® Vipa(xi) = r(xie, mj(xi)) + Viga(Xie41): ¥xi € Q
® value of using a given policy starting in all current states
possible.
® Several states = Significant computations!

¢ Called full backup (Sutton and Barto, 2018)=- Massive
computational load
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DT Policy lteration: Observations

® Vit1(x) = r(xiemi(xi)) + Viga(xies1); Vxie € Q
® value of using a given policy starting in all current states
possible.
® Several states = Significant computations!
¢ Called full backup (Sutton and Barto, 2018)=- Massive
computational load
® Bellman Eq — fixed point equation
® Given admissible policy m;,
VI (xk) = r(xk, mj(xk)) + V' (xk+1) is a contraction map
® Upon iterated starting from VO(xk), V/(xc) = Vj1(xk) as

i — 00.
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® This strategy = backward in time procedure
® Good for:
e Off-line planning, Offline optimization, Offline control
synthesis.
® NOT online leanring (optimla control synthesis using real time
data measured along system trajectories.
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® This strategy = backward in time procedure
® Good for:

e Off-line planning, Offline optimization, Offline control
synthesis.
® NOT online leanring (optimla control synthesis using real time
data measured along system trajectories.
® Exact solutions: very difficult

® | arge state space
® Highly nonlinear dynamics
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® This strategy = backward in time procedure
® Good for:

e Off-line planning, Offline optimization, Offline control
synthesis.

® NOT online learning (optimal control synthesis using real time
data measured along system trajectories.
Temporal Difference (TD) or forward in time learning

® Exact solutions: very difficult

® | arge state space
® Highly nonlinear dynamics
Value Function approximation (VFA): Neural Networks
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Forward in time Learning

Forward-in-time Learning

|
Temporal Difference Error (TD error):
ex = r(xk, Tx,) + Va(Xkt1) — Var(xk)

RHS is DT Hamiltonian

If Bellman Eq holds, e is zero.

® |inear in x.

® Thus, given a policy 7(x), Least Square based solution at
each time k for ¢, = 0.
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Neural network based approximation

NN based approximation

Value Function approximation (VFA): Neural Networks
® Value function is sufficiently smooth over compact space
e Consider dense basis set {¢;(x)} with basis vector
(Weierstrass Theorem):
3(x) = [p1(x)2(x)-pL(x)] :R" — RE
|
Va(x) = Sy wigi(x) = WTg(x)
Substituting in Bellman TD equation:
ex = r(xk, Tx ) + WTd(xkp1) — WTo(xx)

A simple neural network
mpul  hidden  outgul

<o @i (AN
Xyt X3P V() @
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0000000000
Neural network based approximation

Online DT Policy lteration

Initialization Choose an initial stabilizing policy (admissible):
mo(Xk)

Policy Evaluation

Vit (xi) = r(xi mi(xi)) + Vira(xet1)
|

r(Xk, ) = WL (60%) — P(xk11))

Policy Improvement

m41(xk) = argmin (r(x k) + W3 (6(xk11)) )
uel

With r(xk, ux) = kaka + ukTR Uk,
ri1 () = (—1/2)R g7 (VST (xen) Wi @
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Neural network based approximation

Online Policy Iteration

Initialization
Jj<0
Initialize with an admissible policy
7,(x)

Value Update
"(xsz) = Wjil (¢(x,& ) _¢(xk+l))
Policy Improvement
7,4 = (1 2R )V (3, W

jej+1 " :rﬁl(x,, )is the optimal policy
o

[ Use ﬁﬁ_l(x,() as the control policy ]—b W

Polytech Nancy, CRAN, University of Lorraine, France
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Neural network based approximation

Online DT Policy Iteration: Observations

® At k+ 1 : observe Xy, ux = j(Xk), Xk+1

e Calculate r(xx, ux) One scalar Equation in
r(%; ) = Wil (00%) — ¢(xk11))

® Use same policy uyx = 7j(x), collect L data = L equations
(Np(x) = R" — RE).

® Determine LS based solution VAVJ-H

® Repeat till VT/jH = WHQ — W* Apply Improved control
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Neural network based approximation

Batch Least Square Approach

® Can be implemented online by standard system identification
techniques.

® Note that weight update is a scalar equation, whereas the
unknown parameter vector W ; € R’ has L elements.
Therefore, data from multiple time steps are needed for its
solution.

® At time k + 1 we measure the previous state x, the control
ug = mj (xk), the next state xx 41, and compute the resulting
utility r (Xk, | (Xk)).

® These data result in one scalar equation.

® This procedure is repeated for subsequent times using the
same policy 7j(-) until at least L equations are ﬁ'gﬁgsme at
which point the Ieast—squares solution Wj41 canbe RAN %
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Recursive Least square approach

® Express Critic Weight update as:

Wil 0 (k) = Wiy (6 (x) — 0 (xkr1)) = r (i, ) (xk))
with ®(k) = (¢ (xk) — 7¢ (xk+1)) being a regression vector.

® At step j of the policy iteration algorithm, the control policy is
fixed at u = mj(x).

® Then, at each time k the data set (xx, Xkt1, r (X, 7j (Xk))) is
measured.

® One step of RLS is then performed.

® This procedure is repeated for subsequent times until
convergence to the parameters corresponding to the value
Vi (x) = WT,0(x).

® For RLS to converge, the regression vector Q@ e (RA’\ %
®(k) = (¢ (xk) — 79 (xk+1)) must be persistently exciting.
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Online + ONPOLICY Policy Iteration

[ Policy Improvement ]
Data Collection from 7 (\) =15 Colleiﬂlo::rom
Lto L +1second +J

L + jsecond

System
Output
—

JTD (Y) Data Collection from
0to L seconds

UNIVERSITE r
Figure: Online ON-POLICY @ (R @)
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Neural network based approximation

Execution: Adaptive Critic Structures

Vi (x) =r(x,, h] (x,) + Wi ()

Policy Evaluation
CriticNN

Control law update

1, 4V (x,.,)
() == 5 R g (%) —

el

Actor NN

e e @ — V)
Actork X, — %—.h(;‘)

Linear Systems
Nonlinear Systems

hy(x,)

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures: Two time Scale!

Vi () =r(x,, h] (x.))+ Wi (1)

Policy Evaluation
CriticNN

Control law update

AV (%)
dx,.,

1.
Uy (%) = ’ER 'g(x,)

Actor NN

e Y @ — V%)
ACOTN X et $ — h(x,)

Linear Systems
Nonlinear Systems

h(x,)

Improved control law

Figure: Actor Critic Structure
@ (AN %
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Execution: Adaptive Critic Structures

! ‘\
Vin () =r(x,, hj (x )+ 7VS'\+1 (xk+l)ll

Policy Evaluation

Control law update - = ~. CriticNN
/

Lar (XN)\

“(

N(Xu):——R &lx, !’

Actor NN

\

! Linear Sydtems

Nunlinear Systems
/

h(x,)

Improved control law

Figure: Actor Critic Structure @H?“’J&Eﬂﬁz f-QAA %
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Execution: Adaptive Critic Structures

Data-driven control learning Value update
NOT
Model Free! Vﬁl (xk ) = r('xk ’ h] (xk )) + ;/ JH (xlr+l)

Policy Evaluation

Control law update Critic NN
I

1o, V(%)

“M(XL"):izR ‘f( ) dxk l‘

.

-

Actor NN

| Linear Systems |
il Systems
Unkno namics
h(x) (L Uoomemnis |

Improved control law

@ (AN %

Figure: Actor Critic Structure
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RL: Nonlinear Discrete Time
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Neural network based approximation

Execution: Adaptive Critic Structures

RL: Model free approach = Q-function

System xk+l = f(xk) + g('xk )uk
V,(0)=0
Qn(xkvﬂ) = r(xk!zk)+ WX
O, (xpuy) =r(x,uy ) + y0, (x5 h(x,4))
v (x)= n}[m(Q' (x> 1))
h*(x,) = argmin(Q"(x,,u,)) () =— LR gy & (¥4 %
I k > k AN
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