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Policy Iteration

Consider a current policy π(x , u),

• Policy Evaluation: Its value can be determined by solving
the Bellman equation.

• Policy Improvement: Given the value for some policy
π(x , u), find another policy that is better, or at least no worse.
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Policy Iteration

Consider a current policy π(x , u).
• Policy Evaluation: Its value can be determined by solving
the Bellman equation.

V π(x) =
∑
u

π(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV π

(
x ′
)]

for all x ∈ S ⊆ X .

where S is a suitably selected subspace of the state space (to
discuss later).

• Policy Improvement: Given the value for some policy
π(x , u), find another policy that is better, or at least no worse.

π′(x , u) = argmin
π

∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV π

(
x ′
)]

for all x ∈ S ⊆ X
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Policy Iteration

• It can be shown that V π′
(x) ≤ V π(x).

• The policy determined as in (22) is said to be greedy with
respect to value function V π(x).

If, V π′
(x) = V π(x) , then V π′

(x), π′(x , u) satisfy the Bellman
Equations. Therefore π′(x , u) = π(x , u) is the optimal policy and
V π′

(x) = V π(x) the optimal value.
That is, an optimal policy, and only an optimal policy, is greedy
with respect to its own value.

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Basic concepts (Part III)



7/24

Policy Iteration: Introduction PI Algorithm Linear system Discrete Time LQR

some properties

• At each step of such algorithms, a policy is obtained that is
no worse than the previous policy.

• Proof of convergence under fairly mild conditions to the
optimal value and optimal policy.

• proofs are based on the Banach fixed point theorem.

• Bellman Optimality Eq is fixed point equation for V ∗(·).
• Policy Evaluation and Improvement define a contraction Map.
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PI Algorithm

Select an initial policy π0(x , u).
Starting with j = 0, iterate on j until convergence:

PI

Policy Evaluation (PE)

Vj(x) =
∑
u

πj(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γVj

(
x ′
)]

,

for all x ∈ X .

Policy improvement:

πj+1(x , u) = argmin
π

∑
x ′

Pu
xx ′

[
Ru
xx ′ + γVj

(
x ′
)]

for all x ∈ X
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Policy Evaluation (PE)

At each step j , the policy evaluation algorithm determines the
solution of the Bellman equation to compute the value Vj(x) of
using the current policy πj(x , u).
This value corresponds to the infinite sum for the current policy.
For reminder:

V π(x) = Eπ {Jk | xk = x} = Eπ

{ ∞∑
i=k

γ i−k ri | xk = x

}
Then the policy is improved.
The steps are continued until there is no change in the value or the
policy.
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Policy Evaluation (PE)

• Note that j is not the time or stage index k but a policy
iteration step iteration index.

• The policy iteration algorithm must be suitably initialized to
converge. The initial policy π0(x , u) is stabilising .

Note: Policy iteration can be implemented for dynamical systems
online in real time by observing data measured along the system
trajectories. Data for multiple times k are needed to solve the
Bellman equation (25) at each step j .
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Policy Evaluation solution as Iterative procedure

• For finite MDP with N states, the policy evaluation equation
is a system of N simultaneous linear equations, one for each
state.

• Instead of directly solving the Bellman equation (PE), it can
be solved by an iterative policy evaluation procedure.

• Note that (PE) is a fixed point equation for Vj(·) that defines
the iterative policy evaluation map, (contraction map).

V i+1
j (x) =

∑
u

πj(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV i

j

(
x ′
)]

, i = 1, 2, . . . ,
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Policy Evaluation solution as Iterative procedure

• Note that (PE) is a fixed point equation for Vj(·) that defines
the iterative policy evaluation map, (contraction map).

V i+1
j (x) =

∑
u

πj(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV i

j

(
x ′
)]

, i = 1, 2, . . . ,

• The iteration can be initialized at any non-negative value of
V 1
j (·) and the iteration converges to the solution of PE →

this solution is unique.

• A suitable initial value choice is the value function Vj−1(·)
from the previous step j − 1. On close enough convergence,
set Vj(·) = V i

j (·) and proceed to apply PE.

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learning: Basic concepts (Part III)



14/24

Policy Iteration: Introduction PI Algorithm Linear system Discrete Time LQR

Policy Evaluation solution as Iterative procedure

• The index j → step number of the policy iteration algorithm.

• The index i → is an iteration index to solve Policy Evaluation
step (PE).
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Policy Iteration for Linear DT

MDP is deterministic and satisfies the state transition equation

xk+1 = Axk + Buk ,

with the discrete time index k . The associated infinite-horizon
performance index has deterministic stage costs and is

Jk =
1

2

∞∑
i=k

ri =
1

2

∞∑
i=k

(
xTi Qxi + uTi Rui

)
Here: state space X = Rn and action space U = Rm are infinite
and continuous.
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Select a policy uk = µ (xk) and write the associated value function
as

V (xk) =
1

2

∞∑
i=k

ri =
1

2

∞∑
i=k

(
xTi Qxi + uTi Rui

)
An equivalent difference equation is

V (xk) =
1

2

(
xTk Qxk + uTk Ruk

)
+

1

2

∞∑
i=k+1

(
xTi Qxi + uTi Rui

)
=

1

2

(
xTk Qxk + uTk Ruk

)
+ V (xk+1) .

• The solution V (xk) to this equation that satisfies V (0) = 0 ,
is the value given above.

• This is exactly the Bellman equation for the LQR.
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Policy Evaluation

Iterative policy evaluation (PE) .....

Vj(x) =
∑
u

πj(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γVj

(
x ′
)]

,

for all x ∈ X .

.....applied on ”Bellman Equation for the Discrete-Time LQR, the
Lyapunov Equation
yields:

V j+1 (xk) =
1

2

(
xTk Qxk + uTk Ruk

)
+ V j+1 (xk+1)
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Assum value is quadratic in the state for some for some kernel
matrix P, V j (xk) =

1
2x

T
k P jxk

yields the Bellman equation form

xTk P j+1xk = xTk Qxk + uTk Ruk + xTk+1P
j+1xk+1,

Assuming a constant, that is, stationary, state feedback policy
uk = µ (xk) = −K jxk for some stabilizing gain K j leads to:

xTk P j+1xk = xTk Qxk + xTk K j TRK jxk + xTk (A− BK j)TP j+1(A− BK j)xk .
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Policy Evaluation

Since this equation holds for all state trajectories, we have the
Lyapunov Equation as:

0 =
(
A− BK j

)T
P j+1

(
A− BK j

)
− P j+1 + Q +

(
K j

)T
RK j

To solve this Lyapunov Equation, given a fixed policy K j , the
iterative equation is:

P i+1 = (A− BK j)TP i (A− BK j) + Q + K j TRK j .

This recursion converges to the solution of the Lyapunov equation
i.e. as i → ∞, P i → P j+1, with
P j+1 =

(
A− BK j

)T
P j+1

(
A− BK j

)
+ Q +

(
K j

)T
RK j if

(A− BK ) is stable, for any choice of initial value P i=0
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Policy Improvement

The policy improvement step is

µj+1 (xk) = K j+1xk

= argmin
(
xTk Qxk + uTk Ruk + xTk+1P

j+1xk+1

)
which can be written explicitly as

K j+1 = −
(
BTP j+1B + R

)−1
BTP j+1A.
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Observations

• The policy iteration algorithm relies on repeated solutions of
Lyapunov equations at each step.

• called Hewer’s algorithm → proven to converge to the solution
of the Riccati equation in ”The Bellman Optimality Equation
for Discrete-Time LQR Is an Algebraic Riccati Equation.”

• this is offline algorithm

• requires complete knowledge of the system dynamics (A,B)
to find the optimal value and control.

• the algorithm requires that the initial gain K 0 be stabilizing.
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Algorithm
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