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Policy lteration

Consider a current policy 7(x, u),

e Policy Evaluation: Its value can be determined by solving
the Bellman equation.

® Policy Improvement: Given the value for some policy
m(x, u), find another policy that is better, or at least no worse.

@ (AN %

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Lea asic concepts (Part 111)



Policy Iteration: Introduction discrete Time LQR
00000

Policy lteration

Consider a current policy 7(x, u).

® Policy Evaluation: lts value can be determined by solving
the Bellman equation.

Vi(x) =Y w(x.u) Y P [Res + V™ (X)]

forall x € S C X.

where S is a suitably selected subspace of the state space (to
discuss later).

® Policy Improvement: Given the value for some policy
m(x, u), find another policy that is better, or at least no worse.

7'(x,u) = argmin Z Ps [Rys + fyvﬂéx’)]

st CRAN @

forall xe SC X
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Policy lteration

® It can be shown that V™ (x) < V7(x).
® The policy determined as in (22) is said to be greedy with
respect to value function V7(x).

If, V7'(x) = V7(x) , then V™ (x), n’(x, u) satisfy the Bellman
Equations. Therefore ’(x, u) = m(x, u) is the optimal policy and
V™ (x) = V7(x) the optimal value.
That is, an optimal policy, and only an optimal policy, is greedy
with respect to its own value.
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some properties

® At each step of such algorithms, a policy is obtained that is
no worse than the previous policy.

® Proof of convergence under fairly mild conditions to the
optimal value and optimal policy.

® proofs are based on the Banach fixed point theorem.
¢ Bellman Optimality Eq is fixed point equation for V*(-).

® Policy Evaluation and Improvement define a contraction Map.
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Pl Algorithm

Select an initial policy mo(x, u).
Starting with j = 0, iterate on j until convergence:

Policy Evaluation (PE)
Vi(x) = Y _mi(x,u) ) P [Rée + V5 (X))
u x!

for all x € X.

Policy improvement:

mjt1(x, u) = arg min Z PL [Res + 7V (X)] %
™ &
for all x € X
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Policy Evaluation (PE)

At each step j, the policy evaluation algorithm determines the
solution of the Bellman equation to compute the value Vj(x) of
using the current policy 7;(x, u).

This value corresponds to the infinite sum for the current policy.
For reminder:

oo
VT (x) = Ex {Jk | xx = x} = E ny’_kri | Xk = x
i=k

Then the policy is improved.
The steps are continued until there is no change in the value or the

policy. O (AN @
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Policy Evaluation (PE)

® Note that j is not the time or stage index k but a policy
iteration step iteration index.

® The policy iteration algorithm must be suitably initialized to
converge. The initial policy mo(x, u) is stabilising .

Note: Policy iteration can be implemented for dynamical systems
online in real time by observing data measured along the system
trajectories. Data for multiple times k are needed to solve the
Bellman equation (25) at each step j.
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Policy Evaluation solution as lterative procedure

® For finite MDP with N states, the policy evaluation equation
is a system of N simultaneous linear equations, one for each
state.

® Instead of directly solving the Bellman equation (PE), it can
be solved by an iterative policy evaluation procedure.

® Note that (PE) is a fixed point equation for Vj(-) that defines
the iterative policy evaluation map, (contraction map).

Vi) = Do mxou) Y P [Ree 9V ()], i=12,.0
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Policy Evaluation solution as lterative procedure

® Note that (PE) is a fixed point equation for V;(-) that defines
the iterative policy evaluation map, (contraction map).
\/J-"H(x) = ZWJ’(X, u) Z v [Ras + ’y\/ji (xh], i=12,...,
X/

u

® The iteration can be initialized at any non-negative value of
\/Jl() and the iteration converges to the solution of PE —
this solution is unique.

® A suitable initial value choice is the value function Vj_y(-)
from the previous step j — 1. On close enough convergence,

set V;(-) = V/(-) and proceed to apply PE.
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Policy Evaluation solution as lterative procedure

® The index j — step number of the policy iteration algorithm.

® The index i — is an iteration index to solve Policy Evaluation
step (PE).
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Policy lteration for Linear DT

MDP is deterministic and satisfies the state transition equation

Xk+1 = Axk + Buy,

with the discrete time index k. The associated infinite-horizon
performance index has deterministic stage costs and is

1 1
=52 =50 (5 @t ul Ruy)
i=k i=k
Here: state space X = R" and action space U = R™ are infinite
and continuous. -
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Select a policy ux = 11 (xx) and write the associated value function
as

1 1
V(Xk) = 5 § ri = E (X,'TQXi + U,-TRU,')
i=k

An equivalent difference equation is

o

1

1 1
V(xk) = 5 (XIZ-QXk + UkTRUk) +5 > (X;TQXi + UiTRUi)
i=k+1

1
=3 (kaka + ukTRuk) + V (xk11) -

® The solution V (x) to this equation that satisfies V(0) =0 ,

is t-he.value given above. - O (AN %
e This is exactly the Bellman equation for the LQR.
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Policy Evaluation

Iterative policy evaluation (PE) .....

VJ(X) = Zﬂ'j(X, U)Z >l<lx’ [R;(lx’ +7\/J (X/)] )

u

for all x € X.

..... applied on " Bellman Equation for the Discrete-Time LQR, the
Lyapunov Equation
yields:

. 1 :
VIt (x) = 5 (kaka + ukTRuk> + VT (x4 41)
@ (AN %

Dr. Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Polytech Nancy, CRAN, University of Lorraine, France

Introduction to Reinforcement Learn Basic concepts (Part IIl)



Iteration: Introduction

Linear system Discrete Time LQR
0000®00000

Assum value is quadratic in the state for some for some kernel
matrix P, VJ (xc) = 3x] Pix
yields the Bellman equation form

XIZ—PJ—H'Xk = XkTQXk + UIZ—RUk + XIZ—+1PJ+1X;(+1,
Assuming a constant, that is, stationary, state feedback policy

ux = 1 (xx) = —KIx, for some stabilizing gain K/ leads to:

xT P = xT Qx + xT KT RKIxi + x (A — BKI)T PI+1(A — BKY)xq.
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Policy Evaluation

Since this equation holds for all state trajectories, we have the
Lyapunov Equation as:

0=(A—BK/) PIt(A— BK)) - PI*1 4 Q + (K/)| RKI

To solve this Lyapunov Equation, given a fixed policy K/, the
iterative equation is:

PHl = (A— BK)TP(A—-BK) +Q+ KiTRKI.

This recursion converges to the solution of the Lyapunov equation
i.e. as i — oo, P! —T> PJF1 with .
i+l _ ' i+1 ‘ ‘ e
I (4 B)T P (A~ B10) + Q.+ (1) it Coan @)
(A — BK) is stable, for any choice of initial value P/=°
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Policy Improvement

The policy improvement step is
Mj+1 (Xk) — Kj+1Xk
= arg min (kaka + u] Ruy + x,(T+1Pj+1xk+1)

which can be written explicitly as

Kitl = (BTPJ'+1B n R)fl BT PitiA.
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Observations

® The policy iteration algorithm relies on repeated solutions of
Lyapunov equations at each step.

® called Hewer's algorithm — proven to converge to the solution
of the Riccati equation in " The Bellman Optimality Equation
for Discrete-Time LQR Is an Algebraic Riccati Equation.”

® this is offline algorithm

® requires complete knowledge of the system dynamics (A, B)
to find the optimal value and control.

e the algorithm requires that the initial gain K° be stabilizing.
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