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ABSTRACT

As most of the safety critical industrial systems remain sensi-
tive to functional degradation and operate under closed loop,
it becomes imperative to take into account the state of health
(SOH) of systems within the control design process. To that
end, an effective assessment as well as extension of the Re-
maining Useful Life (RUL) of is a standing challenge that
seeks novel solutions at the cross-overs of Prognostics and
Health Management (PHM) domain as well as automatic con-
trol. This paper considers a dynamical system subjected to
functional degradation and proposes a novel prognostics aware
control design strategy that takes into account the SOH esti-
mate as well as RUL prediction within the control design pro-
cedure. The degradation model is considered unknown but
input-dependent. The control design is formulated as an opti-
mization problem and an optimal tradoff is searched between
the performance and desired RUL of the system through the
proposed optimization procedure. The main contribution of
the paper remains in proposal of set-point modulation based
approach wherein the control input at a given present time
stage is modulated in such way that futuristic health of the
system over a long time horizon is extended whilst assuring
acceptable performance. The effectiveness of the proposed
strategy is assessed in simulation using a numerical example
as well as liquid propellant rocket engine case.

Julien Thuillier et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
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ABBREVIATIONS

PHM Prognostics and Health Management
SOH State of Health
RUL Remanining Useful Life
HAC Health Aware Control
LPRE Liquid Propellant Rocket Engines
EKF Extended kalman Filter
ub upper bound (on !)
lb lower bound (on !)

LOX Liquid oxygen
LH2 Liquid Hydrogen
PI Proportional Integral

1. INTRODUCTION

Prognostics and health monitoring (PHM) domain calls for
effective assessment of the state of health (SOH) of system(s)
or sub-systems and development of efficient approaches for
prediction of Remaining Useful Life (RUL) (Xia et al., 2018),
(Jha, Dauphin-Tanguy, & Ould-Bouamama, 2016), (Jha, Bres-
sel, Ould-Bouamama, & Dauphin-Tanguy, 2016). While most
of the existing works in PHM domain focus upon the prog-
nostics problem in open loop, those in automatic control com-
munity target control design without taking into account prog-
nostics based information. However, as most of the safety
critical industrial systems remain sensitive to functional degra-
dation and operate under closed loop, it becomes imperative
to take into account the SOH assessment within the control
design process (Obando, Martinez, & Berenguer, 2021).
On the other hand, few works have also investigated RUL ex-
tension through mission re-planning. For example, (Camci,
Medjaher, Atamuradov, & Berdinyazov, 2019) presents a math-
ematical formulation for integrated maintenance and mission
planning for a fleet of high-value assets, using their current
and forecast health information., (Bellani, Compare, Baraldi,
& Zio, 2019) investigates the importance of considering the
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dynamic management of equipment and its influence on fu-
ture degradation when predicting RUL. It should be noted
that this work does not focus on mission re-planning strategy
based approaches but envisages control input reconfiguration
”on the fly”. The latter becomes particularly important for
mission critical systems, as the extension of their remaining
lifetime during their operation by maintenance actions cannot
always be conducted due to non-accessibility to resources on
fly or non-availability of such resources during the mission.

In fact, the rate of degradation of most industrial components
is mostly system input dependant. For example, degrada-
tion of a rolling bearing depends on the rotating speed and
exerted force (Wang, Tsui, & Miao, 2018), degradation of
an electro-mechanical actuator depends on thermal tempera-
ture which in turn depends on the current within the solenoid
coils (Brown et al., 2009) etc. When such systems operate in
closed loop, the degradation speed invariably depends upon
the control input as well as reference trajectories. An effec-
tive assessment and extension of the remaining useful life of
complex systems is a standing challenge that seeks novel so-
lutions at the cross-over of PHM domain as well as automatic
control (Pour, Theilliol, Puig, & Cembrano, 2021; Jha, We-
ber, Theilliol, Ponsart, & Maquin, 2019). In the aerospace
domain, very few investigations have been done in the past
on these lines (Ray, Wu, Dai, Carpino, & LORENZO, 1993;
Holmes, Tangirala, & Ray, 1997). They explored the concept
of damage-mitigating control for reusable rocket engines and
propose an optimal control policy that incorporates a func-
tional cost based on the control effort and state error. The
main objective of such a control policy being achieving a
balance between the performance of the engine and the ef-
fort exerted on the engine’s thrust. The use of a functional
cost allows for the formulation of an optimization problem
that seeks to minimize the cost while satisfying certain con-
straints. This optimization problem aims to find the optimal
control inputs that achieve the desired balance between per-
formance and effort. This enables real-time adaptation and
optimization of the control actions during the operation of
the reusable rocket engine. Although these studies highlight
well the importance of implementing damage-mitigating con-
trol strategies in the design and operation of reusable rocket
engines, and they do not take into account the SOH of the
system and RUL predictions (prognostics) within the control
design strategy.

Within the literature, there are broadly three types of prognos-
tics approaches. Model-based methods (Swanson, 2001; Luo
et al., 2003) that rely on accurate knowledge of degradation
progression dynamics. However, in the context of most safety
critical systems such as Liquid Propellant Rocket Engines
(LPRE), the system’s behavioral dynamics and degradation
progression models are predominantly nonlinear and not pre-
cisely known, which limits the use of pure model-based ap-
proaches. Data-driven approaches (Roemer, Kacprzynski, &

Orsagh, 2001; Pecht, 2013) on the other hand, primarily rely
on failure data obtained during accelerated degradation tests
as well as actual operational failures. In the presence of lim-
ited data-sets, such approaches remain quite ineffective for
RUL prediction. On the other hand, hybrid prognostics (Jha,
Bressel, et al., 2016) aim to combine the advantages of model-
based and data-driven methods. These approaches involve
fusing an approximately correct degradation model with in-
formation obtained from real sensor measurements in a suit-
able manner (Chelouati, Jha, Galeotta, & Theilliol, 2021).
This fusion allows for a more effective prediction of RUL.
However, up until now, there have been no existing work on
applying hybrid approaches to the prognostics of LPREs and
their suitable inclusion within control design.

Recently, there has been an extensive surge of endeavours
within the framework of Health Aware Control (HAC) wherein
control design approaches are being developed by aggregat-
ing theories of estimation, prognostics, reliability and learn-
ing schemes (Jha, Theilliol, Biswas, & Weber, 2019) leading
to energy saving and optimal performance (Hu, Zou, Tang,
Liu, & Hu, 2020; Ure, Chowdhary, How, Vavrina, & Vian,
2013) and optimal tracking of desired value of RUL (Jha, We-
ber, et al., 2019).

An accurate estimation of SOH and RUL makes it possible
to monitor system health as well as carry out the maintenance
actions proactively, thereby reducing the replacement/incurring
costs and increasing the confidence in the functional opera-
tion. In this context, some previous works include (Commault,
Dion, & Perez, 1991; Huang & Xue, 2014) that target life
extension of propulsion systems without taking into account
prognostics within control design. Further, there are some
works that propose control design incorporating the reliability
of the system (M. Khelassi, Jiang, Theilliol, Weber, & Zhang,
2011; A. Khelassi, Theilliol, Weber, & Ponsart, 2011) as well
as RUL (Rodriguez, Martinez, & Berenguer, 2018; Obando
et al., 2021). These latter works, however, propose reference
modulation through design of a signal filter. Few works in
HAC area include those based on model predictive control
(Salazar, Weber, Nejjari, Sarrate, & Theilliol, 2017) as well
as other model based approaches (M. Khelassi et al., 2011;
A. Khelassi et al., 2011; Rodriguez et al., 2018; Obando et
al., 2021) . However, none of the approaches develop hybrid
prognostics within the control design framework in a compre-
hensive manner. Moreover, most existing work do not con-
sider system input based degradation model which is much
closer to the reality.

Finally, the authors are have conducted preliminary studies
(Thuillier, Galeotta, Jha, & Theilliol, 2022; Thuillier, Jha,
Galeotta, & Theilliol, 2022) wherein controller design is pro-
posed sensitive to the RUL such that the useful life of such
systems is extended. This work builds upon the previous
work, presents detailed analysis and formalises the proposed
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approach with the hybrid prognostics framework. Moreover,
the proposed strategy employs an approximately correct degra-
dation model that is usually built using already available degra-
dation data using some off-line data pre-processing. How-
ever, such aspects are not elaborated in this work but ad-
dressed in previous works (Chelouati et al., 2021; Kanso, Jha,
Galeotta, & Theilliol, 2022).

To bridge this scientific gap, this paper develops a hybrid
prognostics aware control design framework that enables fu-
sion of an approximately known degradation model with avail-
able sensor measurements to obtain estimations of the state
of health and hidden parameters leading to efficient RUL pre-
dictions. Then, as a novelty, the control problem is cast as
an optimization problem taking into account system perfor-
mance as well as desired levels of RUL, such that the refer-
ence trajectory is modified leading to extended useful life of
the system at the expense of system performance. Extended
Kalman Filter (EKF) is employed to preform SOH estima-
tions and RUL predictions leading to effective hybrid prog-
nostics. The main contribution of the paper remains in the
proposition of hybrid prognostics enabled optimization based
reference modification strategy for controller design.

This section is followed by problem statement formulation
(section II), proposition of the novel control design strategy
(section III), analysis in simulation (section IV) and conclu-
sions (section V).

2. PROBLEM STATEMENT

2.1. Global system (Process model)

Consider a linear system in a closed-loop tracking defined as:
(
x(k + 1) = Ax(k) +Bu(k) + ws(k)

z(k) = Cx(k) + v(k)
(1)

with
(
y(k) = Dx(k)

u(k) = �K1x(k) +K2(yref (k)� y(k))
(2)

where x 2 Rn is the fully observable state vector, u 2 R1

is the control input vector, z 2 Rm the output measurement
vector, y 2 R1 the output tracked, yref 2 R1 is the set-point,
A, B, C, D are respectively the system matrix, control ma-
trix, measurement matrix and tracking output matrix of ap-
propriate dimensions. Also, ws 2 Rn is the state noise vec-
tor considered Gaussian ws(k) ⇠ N (0,�!s), v 2 Rn is the
measurement noise considered Gaussian v(k) ⇠ N (0,�v).
Finally, K1 and K2 are control gains with appropriate dimen-
sions.

2.2. Unknown nonlinear degradation model

In general, the degradation models are rarely known in a pre-
cise manner. They must be identified or estimated offline us-
ing accelerated degradation test or otherwise. Moreover, most
degradation mechanisms are nonlinear. In this paper, func-
tional degradation is quantified by an auxiliary state called
degradation state d 2 R1 considered to evolve in a plausi-
ble nonlinear manner, remaining sensitive to system states x,
input u and an unknown scalar parameter ✓ 2 R1, as:

d(k) = �(x(k), u(k), ✓(k)) (3)

where �(·) is a nonlinear degradation function.

2.3. RUL dynamics

In general, it is very difficult if not impossible, to obtain dy-
namics RUL prediction function in a closed analytical form,
as it remains highly nonlinear and depends on present as well
as futuristic values of degradation states and system inputs.
RUL prediction function denoted as dRUL can be considered
as a plausible nonlinear function �(·) sensitive to estimate of
d̂ and the system control input u such as:

dRUL(k) = �(d̂(k), u(k)) (4)

However, under tracking closed loop, the controller provides
a controlled input by taking into account the difference be-
tween the desired reference trajectory (set-point) yref (k) and
system output y(k). The RUL dynamics then depends upon
the controller action that in turn minimises the difference be-
tween the former two. As such, predicted RUL can be ex-
pressed as:

dRUL(k) = �(d̂(k), (yref (k)� y(k)) (5)

Then, the main problem is formulated as development of a
control reconfiguration strategy that takes into account the
state of health of estimate as well as RUL predictions such
that desired levels of RUL as well as system performance is
satisfied leading to the extension of the useful life of the sys-
tem and deceleration of the degradation speed.

2.4. Assumptions

Following assumptions are made in this work.

• Only a component undergoes functional degradation thereby
affecting the global system. Moreover, it is assumed that
this component is known beforehand (plausibly through
some risk assessment analysis done a priori such as Fail-
ure Mode, Effects Criticality Analysis).

• The degradation state is assumed to be implicitly related
to the control input. The value where the SOH attains
the failure state is considered known a priori, based upon
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which a failure threshold can be pre-fixed by the users.
• The desired RUL value is assumed to be known before

hand, at the start of the system functioning to the user,
based on some offline component level degradation tests
adhering to user specifications. This desired RUL value
is then used to generate a linear profile of desired RUL
reference trajectory RULref . Additionally, it is assumed
that such there exists control input values corresponding
to such a desired RUL value (that is, RUL is a reachable
state).

• A nominal system reference trajectory yref is considered
available to the user based on nominal system function-
ing profile.

3. HYBRID PROGNOSTICS ENABLED SET POINT MODU-
LATION STRATEGY

The control reconfiguration design proposed in this paper blends
the hybrid prognostics approach with a set-point modulation
strategy as shown in Fig. 1. To this end, following aspects are
developed:

• Extended Kalman Filter (EKF) based hybrid prognos-
tics: An approximately correct degradation model sen-
sitive to control input is proposed and EKF based state-
parameter estimation technique is employed to assess es-
timations of SOH, hidden degradation parameters and
RUL predictions. Such data are fed to an optimization
module to control the RUL dynamics.

• Set-point modulation: Based on the assumption that the
degradation rate is linked to the system solicitation (in-
put), an optimization procedure modulates the reference
trajectory to a predefined RUL target. To that end, a
modulation parameter ! is introduced in tracking control
setup, between set-point and system output yref (k) �
y(k) as yref (k)�!(k)� y(k). The optimal value !⇤ of
the modulation parameter is obtained as the solution of a
minimization problem with respect to an objective func-
tion sensitive to distance between RUL prediction (from
EKF based hybrid prognostics) at instant k and the pre-
fixed desired value of RUL.

The proposed prognostics-aware reconfiguration strategy is
depicted in Fig. 1.

As observed in Fig. 1, a controller drives the system output
to follow the reference trajectory yref . Among others, a clas-
sical PI controller has been chosen. Thus, the input can be
considered as:

C(z) = kp +
ki.Ts.z

z � 1
(6)

with kp and ki as the PI controller parameters and Ts as the
sample time.

Figure 1. Proposed prognostics aware control reconfiguration
strategy

In what follows, each block of the schematic in Fig. 1 is
detailed.

3.1. Degradation model sensitive to system input

Functional degradation mechanisms across various domains
exhibit certain characteristics such as irreversible nature and
monotonic. Such a set of characteristics can be efficiently
captured mathematically by exponential functions. The ex-
ponential behavior in degradation models can be attributed to
various factors such as wear and tear, aging, fatigue, or other
underlying physical or chemical processes. These processes
often exhibit a cumulative effect, resulting in an accelerated
degradation pattern. For instance, Arrhenius model that has
been used to model a variety of failure mechanisms that de-
pend on chemical reactions, diffusion processes or migra-
tion processes, is exponential in nature (Rocco et al., 2004)
; Coffin-Manson model typically applied model to mechan-
ical failure, material fatigue or material deformation is also
exponential in nature (Li, Xie, Cheng, & Tian, 2020); Paris
model often employed for crack propagation based prognos-
tics remains exponential in nature (Paris & Erdogan, 1963).
Motivated by these observations and similar trends in practice
(Saxena, Goebel, Simon, & Eklund, 2008; Kumar, Kalra, &
Jha, 2022), a general exponential degradation model is pro-
posed that incorporates the cumulative effect of the system
control input u as:

d(k) = e(
Pk

i=1 u(i).↵(i�1).Ts) + wd(k) (7)

under the assumption that the value of u is constant between
two sample times, and where d(k) is the system SOH, and
↵(k) is a slowly varying unknown degradation rate parameter.
!d 2 R1 is the degradation process noise vector considered
Gaussian !d(k) ⇠ N (0,�!d). Sample time is denoted as Ts.
In order to obtain the recursive version of Eq. (7), considering
the fact that ↵(k) is a slowly varying parameter, following
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mathematical manipulation is done:
8
>>>>>>>>><

>>>>>>>>>:

d(k + 1) =e(
Pk+1

i=1 u(i).↵(i�1).Ts) + wd(k + 1)

=e(
Pk

i=1 u(i).↵(i�1).Ts) ⇥ e(u(k+1).↵(k).Ts)

+ wd(k + 1)

=d(k)e(u(k+1).↵(k).Ts) + wd(k + 1)

↵(k + 1) = ↵(k) + w↵(k + 1)

(8)

Then, using a series expansion to order 1 for the exponential
term in Eq. (8) (exp(X) = 1+X+o(X)), the recursive form
is obtained as:

(
d(k + 1) = d(k)(1 + u(k + 1).↵(k).Ts) + wd(k + 1)

↵(k + 1) = ↵(k) + w↵(k + 1)
(9)

wherein the evolution of ↵ is modelled as a slow random walk
process and !↵ 2 R1 as the random walk process noise con-
sidered Gaussian !↵(k) ⇠ N (0,�!↵).

3.2. EKF based hybrid prognostics

The hybrid prognostics is accomplished by fusing the degra-
dation model Eq. (9) with the real measurements of system
using an EKF leading to estimations of d(k),↵(k) and corre-
sponding RUL predictions.

3.2.1. Degradation estimation

EKF based joint state-parameter estimation approach is em-
ployed to estimate the degradation state or the SOH of the
system. The augmented state-parameter vector of the system
is considered as:
✓

x(k + 1)
xd(k + 1)

◆
=

✓
A 0n,2

02,n Ad(k)

◆✓
x(k)
xd(k)

◆
+Bu(k) + wS(k)

✓
z(k)
zd(k)

◆
=

✓
C
Cd

◆✓
x(k)
xd(k)

◆
+ v(k)

(10)

with the degradation state vector xd(k) =
⇥
d(k) ↵(k)

⇤T ,
the system state vector x(k) and the matrices:

Ad(k) =
⇣
1 + (↵(k).u(k).Ts u(k).Ts)

0 1

⌘
, Cd =

✓
1 0
0 0

◆
,

v(k) =
⇣
vz(k)
vd(k)

⌘
, wS(k) =

 
ws(k)
wd(k)
w↵(k)

!
.

The EKF algorithm for estimation is described in Algorithm
1. The Jacobian matrix for the predicted state is defined as
J(k), the measurement model matrix H , the measurement
model matrix with respect to the noise as G. The matrices
Q and R correspond to respectively the process and measure-
ment noise covariance matrices.

Algorithm 1 Algorithm for degradation estimation using
EKF
Input: zdk , Pk|k, uk

Output: x̂dk+1|k+1

Initialisation : zd0 , x̂0|0, P0|0
1: if (i 6= 0) then
2: x̂dk+1|k = Ad(k)xdk|k

3: Pk+1|k = J(k)Pk|kJ(k) +Q
4: zdk+1|k = Cdxdk+1|k

5: Sk+1 = Hk+1Pk+1|kH
T

k+1 +GRk+1GT

6: Kk+1 = Pk+1|kH
T

k+1S
�1
k+1

7: x̂dk+1|k+1
= x̂k+1|k +Kk+1|k(zdk+1 � zdk+1|k)

8: Pk+1|k+1 = Pk+1|k �Kk+1Sk+1KT

k+1
9: zdk+1|k+1

= Cdx̂dk+1|k+1

10: end if
11: return x̂dk+1|k+1

3.2.2. RUL predictions

A failure threshold (noted Dfail) indicates the limit on the
SOH value corresponding to a system in failure. RUL is given
by the equation below with k as the instant of prediction and
nfail as the instant of failure:

RUL(k) = (nfail � k).Ts (11)

The SOH progresses in time and as the fault value increases,
the SOH attains the failure level Dfail known a priori. The
RUL prediction at any discrete time instant k can be obtained
using L-step ahead prediction. This is done by projecting the
estimated SOH in the future along the estimated degradation
model (state model) in Algorithm 1 (see Eq. (10)).

Recursive approach
A recursive approach for RUL prediction within the hybrid
prognostics context is well established in the literature (M. Daigle,
Saha, & Goebel, 2012; M. J. Daigle & Goebel, 2012) and
quite extensively employed in several domains in conjunc-
tion with wide range of estimators and their variants such as
kalman filters, unscented kalman filters, particle filters (Reuben
& Mba, 2014) etc. this approach is adopted here. The L-step
ahead prediction procedure employed for RUL prediction is
given in Algorithm 2. It should be noted that futuristic predic-
tions are computed keeping the value of control input same,
throughout the prediction process. To that end, a recursive
algorithm is employed as shown in Algorithm 2 (Thuillier,
Galeotta, et al., 2022).

Remark: Although, the recursive algorithm successfully gen-
erates RUL prediction estimates, the optimization based ap-
proach proposed in this work requires closed-forms of math-
ematical expression of RUL prediction. To this end, a closed
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Algorithm 2 L-step ahead RUL prediction
Input: uk

Output: ˆRUL
Initialisation : L = 0

1: [d̂(i), ↵̂(i)] =Algorithm 1(zdk , Pk|k, uk)

2: dL(i) = d̂(i)
3: while dL(i)  Dfail do
4: dL(i) = dL(i). (1 + ↵̂(i).u(i).Ts))
5: L = L+ Ts

6: end while
7: ˆRUL = L
8: return ˆRUL

form analytical expression is derived next.
The degradation expressed in Eq. (9) is expressed as function
of the instant of system’s failure nfail and the SOH value at
instant k.

d(nfail) = d(k).(1 + ↵(k).u(k).Ts)
nfail�k (12)

Defining L as the number of discrete time steps needed to
SOH failure value, nfail can be expressed as nfail = k + L,
so at instant k, L step prediction is necessary from k in future
to reach the instant of failure nfail:

d(nfail) = d(k).(1 + ↵(k).u(k).Ts)
L (13)

Then, consider the situation when degradation value (SOH)
exceeds a threshold Dfail at the instant nfail:

d(nf ) < Dfail (14)

From Eq. (13) and Eq. (14) one obtains:

d(k).(1 + ↵(k).u(k).Ts)
L < Dfail (15)

Taking logarithm on either sides, one obtains:

L.log (1 + ↵(k).u(k).Ts) > log

✓
Dfail

d(k)

◆
(16)

so that:

L >
log
⇣

Dfail

d(k)

⌘

log (1 + ↵(k).u(k).Ts)
(17)

Then, consider the smallest integer value of L that satisfies
the inequality :

L = d
log
⇣

Dfail

d(k)

⌘

log (1 + ↵(k).u(k).Ts)
e (18)

where dxe correspond to the ceiling of the value of x.

As this L steps are taken to reach the failure from the present
instant k, RUL prediction value at time k dRUL(k) becomes:

dRUL(k) = L (19)

leading to closed-form expression of RUL prediction as:

dRUL(k) = d
log
⇣

Dfail

d̂(k)

⌘

log (1 + ↵̂(k).u(k).Ts)
e (20)

3.3. Set-point modulation

To optimize RUL evolution, a modulation parameter !(k) is
introduced in the tracking control between the set-point and
the system output so that yref (k)� y(k) becomes yref (k)�
!(k)� y(k). Then, Eq. (5) can be expressed as a function of
the modulating parameter !, i.e.

dRUL(k) = �(d̂(k), ((yref (k)� !(k))� y(k))) (21)

The modulation parameter w(k) is a design variable to slow
down the degradation rate and directly modulate the reference
trajectory yref (k).
To that end, a cost function is proposed that penalizes the
magnitude of the modulation parameter ! as well as the RUL
based performance i.e. difference between the desired and
actual RUL estimate. This is done to obtain a suitable trad-
off between system performance and slow down the degra-
dation rate leading to the desired RUL based performance of
the system. Moreover, penalizing ! translates to the fact that
modulation of control input reference is not very ”aggressive”
which is required for appropriate functioning of the system .
To that end, consider the cost function J(k) defined as:

J(k) = �.!(k)2 + (1� �).
⇣
RULref (k)� dRUL(k)

⌘2
(22)

using dRUL(k) from Eq. (21) and RULref (k) is the RUL ob-
jective given. In terms of the computational aspect, dRUL(k)
can be obtained from the closed form (Eq. (20)) or via recur-
sive L-step ahead approach (Algorithm 2).
The objective function J(k) can be seen as a result of a trade-
off between the modulation of the reference trajectory (effort
on the system) and the system’s RUL value where � is the
weight parameter. Then the objective of the optimization is
translated to finding an optimum !⇤(k) that minimizes the
objective function, i.e.

!⇤(k) = argmin J(k) (23)

where the constraints on the solution can be imposed as lb 
!(k)  ub wherein, by default, they can be set as lb(k) = 0
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and ub(k) = max(yref ), to prevent a complete breakdown
of the system.

The procedure of the set-point modulation is presented in the
Fig. 2 and details are summarised in Algorithm 3.

Figure 2. Set-point modulation

Algorithm 3 Set point modulation based reconfiguration
strategy
Input: RULref , yref , y, uk,
Output: !⇤

[d̂(k), ˆ↵(k)] =Algorithm 1(zdk , Pk|k, uk)

2: if ˆRUL(k) < RULref (k) then
J(k) = �.!(k)2 + (1 � �).(RULref (k) �
Algorithm 2(u(k))2

4: such lb  !  ub
!⇤(k) = argmin(J(k))

6: end if
return !⇤(k)

Remark: As the cost function penalises the modulation pa-
rameter and RUL based performance difference, it remains
system/degradation mechanism agnostic in that it can be ap-
plied to dynamical systems in general, respecting the given
set of hypotheses.

4. SIMULATION STUDY

Simulation studies on two dynamical systems is presented to
assess the effectiveness of the proposed approach.

4.1. Example 1

The system considered is a second-order linear state space
system as:
8
>>>><

>>>>:

 
x1(k + 1)

x2(k + 1)

!
=

 
�12 �20.02

1 0

! 
x1(k)

x2(k)

!
+

 
1

0

!
u(k) + wS(k)

z(k) =
⇣
0 2

⌘ x1(k)

x2(k)

!
+ v(k)

(24)

A PI controller described in Eq. (6) drives the system output
to follow the reference trajectory with kp = 17 and ki = 47
and wS(k) and v(k) represent the state noise and measure-
ment noises respectively as described in (1). The damage
propagation model is considered as a degradation of the actu-
ator, affecting the input signal u as:

x(k + 1) = Adx(k) +B(u(k)� d(k)) + wS(k) (25)

with d(k) being the cumulative degradation phenomena. As
explained in Eq. (26), the degradation is an accumulation of
�(k) based on the system’s state x1. The degradation is active
on the system when �(k) exceeds a certain threshold noted
Klim:

d(k) =

(
0 if�(k) < Klim

(�(k)�Klim)Kexp if�(k) > Klim

(26)

with �(k) defined as:

�(k) =
NX

k=1

x1(k)

where N is the iteration number.

Numerical parameters are set as Klim = 1.5 ⇥ 105. The
system is considered in failure when the degradation hits a
failure threshold, which in our case is set as dfail = 0.65.
The optimization parameters are set as follows: ub = 35 and
� = 0.99 so that more importance weight can be attributed on
the RUL control than the performance in the objective func-
tion, to better highlight the impact of the proposed reconfigu-
ration strategy on the RUL.

Fig. 3 shows the profiles of degradation d(k), the accumula-
tion of the degradation �, the reference trajectory yref , the
system trajectory y, and the system input u provided by the
PI controller. It can be seen that the system output follows
the reference trajectory (the controller has compensated for
the degradation effects) in an appropriate manner.

At each discrete time step k, degradation estimation as well
as RUL predictions are generated using an EKF and the L
step prediction process respectively. The estimation and pre-
diction d̂, and dRUL obtained are shown in Fig. 4. It can be
seen that the RUL predictions are well sensitive to the control
input changes. With the given RULref , it is observed that
in the absence of a reconfiguration strategy, the RUL of the
system does not follow the target RULref .

Algorithm 3 (see also Fig. 2) is applied on the system at each
time step k. The solution of the optimization ! and the value
of the objective function are shown in Fig. 5. The value of
! increases over time with the RUL being modified through

7
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Figure 3. Evolution of the degradation level, degradation ac-
cumulation, reference, and system trajectory and system in-
put
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Figure 4. Degradation estimate and RUL prediction - using
algorithm 1.

out the lifetime of the system. Moreover, with an injection
of an abrupt change (step) at 400s in the set-point yref , it is
observed that the algorithm takes into account this change to
provide an adequate solution on !. Upon the application of
the proposed ! (Fig. 6), there is a certain reduction in the
magnitude of the reference trajectory (in red) leading to de-

250 300 350 400 450
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250 300 350 400 450
Time (s)

0

500

1000

1500

2000

Figure 5. Optimization solution and cost Function

celeration of the degradation rate, which in turn allows the
system’s RUL to follow RULref (in black).
Now, the pre-defined EOL of the system RULref is set at
500 seconds. The proposed approach extends the EOL of the
system from 442 seconds (without the proposed strategy) to
494 seconds. Indeed, the parameters � and ub chosen in this
case attribute higher relative importance to the RUL than the
system performance.
Next, to asses the relative performance associated with and
without the proposed approach, certain indicators of health
and performance are defined that facilitate the study the pa-
rameters’ impacts on the results obtained from the proposed
approach.

4.1.1. Indicator definition

The performance indicator (noted IP ) and the health indicator
(noted IH ) are defined below as a function of a given set of
parameters (�,ub):

IH(�, ub) =
EOLWithStrategy

EOLWithoutStrategy

⇥ 100 (27)

IP (�, ub) =
1

N
(

NX

i=1

yref (i) + !(i)

yref (i)
)⇥ 100 (28)

with yref and y corresponding respectively to the reference
trajectory and the system output trajectory.
These indicators illustrate the impact of the trade-off between
performance and health under the proposed strategy.

8
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Figure 6. reference trajectory, degradation evolution and
RUL with and without optimization

4.1.2. Results of different parameter ub

Different tests with different values of the parameter ub and a
fixed value of � have been performed (� = 0.1) (see Table I).

Table 1. Test with different ub values

test 1 2 3 4 5 6 7 8
ub 1.5 3 4.5 6 7.5 9 10.5 12

The obtained reference trajectory, degradation, and RUL evo-
lution for each test are shown on Fig. 7. The Indicator IP and
IH results are shown Fig. 8.
With big values of ub, the range of the possible solutions !
becomes wider, which leads to a more significant reduction
of the system performance indicator IP and an increase in the
system health indicator IH . In fact, the basic requirements on
system performance and system health, a value of ub must be
properly chosen. Further, an appropriate choice of � allows
for suitable balance between the system performance and the
RUL oriented performance of the system.

4.1.3. Results with different parameter �

Different tests with different values of the parameter � and a
fixed value of ub (ub = 4) have been computed (see Table II).

Table 2. Test with different � values

test 1 2 3 4 5 6 7 8
� 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99

A decreasing � value leads to a higher value of the objective
function with respect to ”RUL tracking”. This means that the

Figure 7. ub variation: reference trajectory, degradation evo-
lution and RUL with and without optimization
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Figure 8. Indicators evolution for ub variations

control design prioritizes the remaining useful life of the sys-
tem over its performance. With a higher value of solution
! obtained, the degradation rate reduces. On the contrary,
when a higher value of � is applied, we obtain a lower IH
and a bigger IP . This means that the control design priori-
tizes the performance of the system over its remaining useful
life. In order to balance between performance and remaining
useful life, the value of � must be properly defined. The final

9
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Figure 9. � variations: reference trajectory, degradation evo-
lution and RUL with and without optimization
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Figure 10. Indicators evolution for � variations

parameter choices must take into account both indicators to
achieve an optimal control design.

4.2. Application LPRE

The proposed strategy is applied on a fictive LPRE LOX-LH2
engine model of 10KN subjected to degradation shown in
Fig. 11. The engine is composed of liquid rocket propel-
lant pumps operated to allow circulation under high pressure

Figure 11. Liquid Propellant Rocket Engine - LH2-LOx

through complex liquid circuits. Two control valves allow the
mixture ratio balance of the engine to be adjusted according
to the operating point. The reaction between the propellants is
carried out within the combustion chamber with the ejection
of the heat flow through the throat and the nozzle. Readers
are referred to (Thuillier, Galeotta, et al., 2022; Thuillier, Jha,
et al., 2022)) for details on the system.
Here, degradation refers to the appearance of cracks on the
combustion chamber wall which can cause fuel leakage from
the regenerative circuit into the combustion chamber and cause
combustion efficiency loss (degradation of ⌘C⇤). The degra-
dation is modeled as leak in the regenerative circuit and a
loss of flow in the combustion chamber. The SOH indicator
denoted as SOH is defined as the normalized characteristic
speed efficiency, which is the ratio (denoted ⌘C⇤) between
the real characteristic speed (C⇤) and the theoretical charac-
teristic speed (C⇤

theoretical
).

The efficiency is defined as:

⌘C⇤(k) =
C⇤(k)

C⇤
theoretical

(29)

and as such, the SOH can be expressed as:

SOH(k) =
⌘C⇤

max
� ⌘C⇤(k)

⌘C⇤
max

� ⌘C⇤
min

(30)

with ⌘C⇤
max

and ⌘C⇤
min

the maximal and the minimum reach-
able values of ⌘C⇤.

The exact degradation model is considered unknown due to
the complexity of the LPRE physical model. An approxi-
mately correct degradation model based on general character-
istics of degradation, previously described in Eq. (12), is con-
sidered for hybrid prognostics using an EKF. The proposed
approximation model of the degradation is adapted to such a

10
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Figure 12. SOH, RUL and pressure chamber of the system
without strategy

system followed by an estimation of the SOH and futuristic
RUL for the chamber pressure chamber. SOH , dSOH , and
chamber pressure are shown in Fig. 12. The chamber pres-
sure profile, oscillating between two values of pressure, can
be identified as a stress bench in order to assess the quality
of the motor. The SOH (in blue) is highly noisy. EKF (based
on an approximate degradation model input dependant, see
Eq. (12)) provides a good estimate of the SOH noted dSOH
(in red).
Considering the LPRE case, the failure threshold dfail is set
to dfail = 0.012. dSOH and RUL prediction are presented in
Fig. 13. The SOH passes the failure threshold at time 6988s
which leads to system failure. The system without the set-
point modulation strategy doesn’t achieve the set EOL target
of 7300s given by the RULref (in black).

On the other hand, the set-point modulation strategy (Algo-
rithm 3), leads to the optimization Eq. (22) performed at each
instant of time. To that end, the optimization parameters
� = 0.1 and the upper bound ub = 0.6 ⇥ 106 are set in
accordance to the real time on-field application constraints.
The target EOL is set to 7200s. Implementation to LPRE im-
plies modulation of the chamber pressure that invariably leads
to change in dynamic behaviour of the LRPE.

Fig. 14 shows the evolution of SOH, RUL prediction and
chamber pressure. Under the proposed approach, the opti-
mization procedure results in progressive decrease in cham-
ber pressure when the approach is activated. This is due to the
modulation of the input in order to reach the desired RUL at
each instant of time through a suitable comprise on the system
performance leading to a certain ”reduction” in the pressure
value until the demanded comprise is reached through opti-
mization. The modulation strategy enables changes (abrupt
as well as oscillatory) within system variables such that pre-
dicted RUL matches the desired RUL. Against the system
performance without the proposed strategy shown in Fig. 14,
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Figure 13. SOH, RUL and pressure chamber of the system
without strategy
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Figure 14. SOH , RUL and pressure chamber of the system
with strategy

such changes are apparent and amplified as the EOL approaches
(near 7000s) as shown in Fig. 14. The controller attempts
to reduce further the chamber pressure (system performance)
in order to gain RUL. As discussed before, various hyper-
parameters prevent the controller from reducing the perfor-
mance beyond a certain level. The set point modulation strat-
egy is able deliver an extension of EOL to 7327s.
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5. DISCUSSIONS

LPRE system is a complex nonlinear system wherein various
components and sub-systems are mutually coupled dynami-
cally. As such, degradation in a component raises the pos-
sibility of affecting the nominal functioning of other compo-
nents and system as a whole. Thus, the compromise over per-
formance of a component must be sought taking into account
nominal functioning of other critical components not neces-
sarily sensitive to degradation directly. This indeed reduces
the scope for values of several hyper-parameters including �
within the optimization routine leading to plausible conser-
vative behaviour. This is evident from predicted RUL profile
in Fig.14 where the proposed strategy seems to ”revive” the
system near 7000s wherein EOL seems have been attained,
followed by increase in RUL prediction through a subsequent
action of controller. Although this demonstrates well the in-
fluence of proposed strategy over the system/RUL dynam-
ics, the complex dynamics leaves the users with restricted
choices leading to such a conservative behaviour which may
be avoided through more sophisticated nonlinear control de-
signs in future.

Further, the controller is primarily PI based and as such, with
suitably selected controller gains, the controller with modula-
tion conserves the basic properties of a PI controller such as
stability of the system and robustness to perturbation. How-
ever, given that such properties of a PI controller is well es-
tablished, this work does not study the controller performance
in the classical sense.

6. CONCLUSION

This paper presents a novel control design strategy that takes
into account the state of health and remaining useful life of
a dynamical system subjected to functional degradation. The
proposed strategy introduces a set-point modulation approach
that adjusts the reference trajectory of the system based on the
degradation state estimation and remaining useful life predic-
tion. The modulation parameter within the optimization, not
only modifies the reference trajectory, but also affects the per-
formance of the system. The results show that the proposed
strategy can effectively extend the remaining useful life of the
system while maintaining acceptable performance. As nov-
elty, an analytical closed form of RUL prediction equation is
derived for computationally efficient generation of RUL pre-
dictions, contrasting with the typically employed L � step
ahead prediction procedures that require waiting for arrival
of predictions before optimization leading to computations
at different time scales. Moreover, presence of closed form
facilitates the formulation of the optimization cost function.
Although, the work considers exponential degradation mech-
anism which are quite ubiquitous, derivation of a closed form
RUL prediction expression cannot always be guarenteed call-
ing for further research in this direction. The proposed strat-

egy assumes that the failure threshold value is known and pre-
fixed, and the desired RUL trajectory or the desired EOL is
known beforehand, which may not be true in all scenarios. A
reachability analysis needs to be performed to ascertain if the
desired RUL is attainable, that is, there is a control input that
will lead to such a desired RUL/EOL value. Furthermore,
in this work, uncertainty associated with RUL prediction as
well as state-of-health (SOH) estimation have not been con-
sidered. Uncertainty quantification and inclusion of the latter
within control design is a promising perspective for future re-
search as initiated in (Kanso et al., 2022).
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