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Optimal Cost

The optimal cost can be written as
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Bellman Optimality Principle

Bellman Principle

”An optimal policy has the property that no matter what the
previous control actions have been, the remaining controls
constitute an optimal policy with regard to the state resulting from
those previous controls.”
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Bellman Optimality Equation

This principle implies Optimal Cost can be written as

Bellman Optimality Equation

Vk
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Suppose an arbitrary control u is now applied at time k , and the
optimal policy is applied from time k + 1on. Then Bellman’s
optimality principle indicates that the optimal control policy at
time k is given by

π∗(x , u) = argmin
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Optimal Cost

Assumptions:

• Markov chain corresponding to each policy, with transition
probabilities, is ergodic,

• every MDP has a stationary deterministic optimal policy.
Minimize the conditional expectation over all actions u in
state x .
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Dynamic Programming: Key Points

• The backward recursion forms the basis for dynamic
programming.

• Offline methods for working backward in time to determine
optimal policies.

• DP is an offline procedure for finding the optimal value
and optimal policies that requires knowledge of the
complete system dynamics in the form of transition
probabilities Pu

x ,x ′ = Pr {x ′ | x , u} and expected costs
Ru
xx ′ = E {rk | xk = x , uk = u, xk+1 = x ′}.
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Need for Forward-in-Time procedures

• Dynamic programming is a backward-in-time method for
finding the optimal value and policy.

• By contrast, reinforcement learning is concerned with finding
optimal policies based on causal experience by executing
sequential decisions that improve control actions based on the
observed results of using a current policy.

• This procedure requires the derivation of methods for finding
optimal values and optimal policies that can be executed
forward in time.
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Infinite Horizon cost

Set the time horizon T to infinity and define the infinite-horizon
cost

Jk =
∞∑
i=0

γ i rk+i =
∞∑
i=k

γ i−k ri

The associated infinite-horizon value function for the policy π(x , u)
is

V π(x) = Eπ {Jk | xk = x} = Eπ

{ ∞∑
i=k

γ i−k ri | xk = x

}
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Bellman Equation

With T = ∞, it is seen that the value function for the policy
π(x , u) satisfies the Bellman equation
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Bellman Eq. Observations

• Consistency equation that must be satisfied by the value
function at each time stage.

• It expresses a relation between the current value of being in
state x and the value of being in next state x ′ given that
policy π(x , u) is used.

• The solution to the Bellman equation is the value given by the
infinite sum (seen earlier).

V π(x) = Eπ {Jk | xk = x} = Eπ

{ ∞∑
i=k

γ i−k ri | xk = x

}
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Bellman Equation vs Bellman Optimality Equation

Bellman Optimality Equation:

Vk
∗(x) = min

π

∑
u

π(x , u)
∑
x ′
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xx ′ + γV ∗
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(
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The Bellman optimality equation involves the ”minimum” operator
and so does not contain any specific policy π(x , u). Its solution
relies on knowing the dynamics, in the form of transition
probabilities.
By contrast........
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Bellman Equation vs Bellman Optimality Equation

Bellman Equation:

V π(x) =
∑
u

π(x , u)
∑
x ′
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xx ′

[
Ru
xx ′ + γV π

(
x ′
)]

Bellman equation is simpler than that of the optimality equation,
and it is easier to solve. The solution to the Bellman equation
yields the value function of a specific policy π(x , u).

• V π(x) may be considered as a predicted performance,

• ∑
u π(x , u)

∑
x ′ P

u
xx ′R

u
xx ′ the observed one-step reward,

• and V π (x ′) as a current estimate of future behavior.
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Bellman Eq to Bellman Optimality

Given:
• a current policy π(x , u),
• MDP is finite and has N states,
• Bellman equation is a system of N simultaneous linear
equations for the value V π(x) of being in each state x .

The optimal value satisfies

V ∗(x) = min
π

V π(x)

= min
π

∑
u
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Bellman’s optimality principle then yields the Bellman optimality
equation

V ∗(x) = min
π
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Bellman Eq to Bellman Optimality

Bellman optimality equation can be written as

V ∗(x) = min
u

∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV ∗ (x ′)]

This equation is known as the Hamilton-Jacobi-Bellman
equation in control systems. If the MDP is finite and has N
states, then the Bellman optimality equation is a system of N
nonlinear equations for the optimal value V ∗(x) of being in each
state. The optimal control is given by

u∗ = argmin
u

∑
x ′
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xx ′

[
Ru
xx ′ + γV ∗ (x ′)]
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Relation to Feedback Control of Dynamical systems

• For the Discrete-Time the linear quadratic regulator (LQR),
the Bellman equation becomes a Lyapunov equation.

• The Bellman Optimality Equation for Discrete-Time LQR Is
an Algebraic Riccati Equation”
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System

MDP is deterministic and satisfies the state transition equation

xk+1 = Axk + Buk ,

with the discrete time index k . The associated infinite-horizon
performance index has deterministic stage costs and is

Jk =
1

2

∞∑
i=k

ri =
1

2

∞∑
i=k

(
xTi Qxi + uTi Rui

)
Here: state space X = Rn and action space U = Rm are infinite
and continuous.
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Select a policy uk = µ (xk) and write the associated value function
as

V (xk) =
1

2

∞∑
i=k

ri =
1

2

∞∑
i=k

(
xTi Qxi + uTi Rui

)
An equivalent difference equation is

V (xk) =
1

2

(
xTk Qxk + uTk Ruk

)
+

1

2

∞∑
i=k+1

(
xTi Qxi + uTi Rui

)
=

1

2

(
xTk Qxk + uTk Ruk

)
+ V (xk+1) .

• The solution V (xk) to this equation that satisfies V (0) = 0 ,
is the value given above.

• This is exactly the Bellman equation for the LQR.
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Assuming that the value is quadratic in the state so that

Vk (xk) =
1

2
xTk Pxk

for some kernel matrix P, yields the Bellman equation form

2V (xk) = xTk Pxk = xTk Qxk + uTk Ruk + xTk+1Pxk+1

which, using the state equation, can be written

2V (xk) = xTk Qxk + uTk Ruk + (Axk + Buk)
T P (Axk + Buk)
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Assuming a constant, that is, stationary, state feedback policy
uk = µ (xk) = −Kxk for some stabilizing gain K , write

2V (xk) =xTk Pxk

=xTk Qxk + xTk KTRKxk

+ xTk (A− BK )TP(A− BK )xk .

Since this equation holds for all state trajectories, we have

(A− BK )TP(A− BK )− P + Q + KTRK = 0,

which is a Lyapunov equation.
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Observations

• That is, the Bellman equation for the discrete-time LQR is
equivalent to a Lyapunov equation.

• Value recursion equations do not depend on model (A, B)
(see last to last slide).

• But Lyapunov equation can only be used if the state dynamics
(A,B) are known (see Last slide).

• Reinforcement learning algorithms for learning optimal
solutions online can be devised by using temporal difference
methods. That is, reinforcement learning allows the Lyapunov
equation to be solved online without knowing A or B.
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Bellman Optimality Equation for Discrete-Time LQR

The discrete-time LQR Hamiltonian function is

H (xk , uk) =xTk Qxk + uTk Ruk + (Axk + Buk)
T

× P (Axk + Buk)− xTk Pxk .

A necessary condition for optimality is the stationarity condition
∂H (xk , uk) /∂uk = 0,
which is equivalent to finding the minimum control using first
partial derivative.
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ARE

Solving this equation yields the optimal control

uk = −Kxk = −
(
BTPB + R

)−1
BTPAxk .

Inserting this equation in above, yields the discrete-time algebraic
Riccati equation (ARE)

ATPA− P + Q − ATPB
(
BTPB + R

)−1
BTPA = 0.

The ARE is exactly the Bellman optimality equation for the
discrete-time LQR.
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