Degradation-Conscious Model predictive Control For Marine Solid Oxide Fuel Cells

Seminar 2024 Health Aware and Safe Control Learning & Design for Dynamic Systems

Paris, 19-11-2024

Contents

- Introduction
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Contents

- Introduction
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Shaping the Future of Maritime Systems: Autonomy and Sustainability

Goals

Challenges

Transition to Autonomy

Achieving Zero Emissions

- Nonlinear vessel dynamics and interconnections.
- Evolving conditions: obstacles, weather, human behavior.
- Faults in sensors, actuators, and systems.
- Adhering to international regulations (e.g., COLREGS).

- Reducing environmental impact
- Managing diverse vessel types, traffic, and logistics.
- Integrating sustainable energy solutions

Safe-NET Safe AutoNomous MaritimE Transport Group

"Enhance the autonomy of the maritime transport aiming to ensure safety against significant uncertainties and unexpected events"

- 1. Advancing Safe Autonomy: Driving digitalization and automation across all maritime systems while prioritizing safety.
- 2. Sustainability and Efficiency: Enabling greener, more efficient, and reliable maritime transport systems.
- **3.** Research Methodology: Integrating modeling, control, monitoring, and cyber-physical-human frameworks, validated through real-world applications.

ŤUDelft

AmmoniaDrive project

The AmmoniaDrive project aims to reduce shipping industry carbon emissions by developing a new ship paradigm that will be fueled by ammonia.

- Who? AmmoniaDrive consortium: 6 universities, 3 research centers and 10+ private companies
- What? Design a new ship concept fueled by ammonia
- Why? Decarbonize shipping industry
- How? Development of a hybrid powerplant based on SOFC-ICE technologies

Contents

- AmmoniaDrive
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Solid Oxide Fuel Cells

SOFCs are **electrochemical conversion devices** that generate **electricity** by **oxidizing** a **fuel**, such as hydrogen.

Unlike PEM fuel cells, they do not require pure hydrogen and can use **fuels** like **H**₂, CH₄, NH₃, and hydrocarbons.

They operate at **high temperatures** and achieve **efficiencies up to 60%**, or higher in combined systems.

Applications:

- Power Plants
- Vehicles
- Ships

Challenges*

Nonlinear Behavior

The mismatch between fast electrochemical reactions and slow thermal dynamics in SOFCs leads to nonlinear behavior, with vast dynamics and limited adaptability to rapid load changes.

Dynamic tracking

The system's complexity and operational constraints result in slow dynamic performance, making efficient tracking of both temperature and power generation highly challenging for SOFCs.

Longevity and degradation

Thermal cycling, material fatigue, chemical reactions, and the buildup of impurities in the fuel and oxidant contribute to cell degradation over time, reducing their longevity.

*Associated Literature review in annex

Dynamical model

SOFC dynamics is governed by two main processes: the **energy balance**, which determines cell temperature, and the **electrochemical reactions**, which dictate **voltage output**.

Various models exist in literature, for our study, we utilized a reduced-order model (ROM)*. Key features:

- **Constant temperature** throughout the cell
- Accurate chemical process representation while maintaining model efficiency.

Dynamical model

Dynamical model

Electrochemistry
$$V = -\frac{\Delta g}{2\overline{F}} + \frac{\overline{R}T}{2\overline{F}} \ln(Q) - \frac{IR_a}{\overline{A}}$$
 Ohmic losses
Nernst Voltage
Reaction Quotient $Q = \frac{(n_{H2} + \sum_m \overline{\nu}_{H2,m} r_m)(n_{O2} + \sum_m \overline{\nu}_{O2,m} r_m)^{\frac{1}{2}}}{n_{H2O} + \sum_m \overline{\nu}_{H2O,m} r_m}$

Physical constraints

$$\begin{split} \mu_f &= \frac{I}{2\overline{F}\left(4n_{\mathrm{CH}_4} + n_{\mathrm{CO}} + n_{\mathrm{H}_2}\right)}, \quad 0 \leq \mu_f \leq 1 \qquad \text{Fuel utilization} \\ \mu_a &= \frac{I}{4\overline{F}n_{\mathrm{O}_2}}, \quad 0 \leq \mu_a \leq 1 \qquad \qquad \text{Air utilization} \end{split}$$

Degradation model

SOFC degradation is influenced by **operational factors** such as **temperature cycles** and **current** demand, which affect long-term performance and **lead to failure**.

Voltage degradation represents the increase in voltage losses due to cell ageing and suboptimal operation.

The selected experimental model* relates the rate of increase in the Ohmic resistance of the cell with its current state of operation, namely:

- Cell internal temperature
- Current
- Fuel utilization

*A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization V. Zaccaria et al., 2016

Contents

- AmmoniaDrive
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Control Objective

Nonlinear Behavior

Addresses the inherent nonlinear behavior and complexity of SOFCs by accounting for the interaction between fast electrochemical reactions and slow thermal dynamics

Dynamic tracking

Efficient electrical power load tracking and precise cell internal temperature management, while ensuring that operational constraints are met throughout varying conditions.

Longevity and degradation

Incorporate the degradation model to optimize system operation at specific working points, reducing degradation and enhancing the SOFC's lifespan.

Degradation-Conscious nMPC

Extended State space representation

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} T \\ R_a \\ n_f \\ n_a \\ I \end{bmatrix} \in \mathbb{R}^5$$

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_f \\ u_a \\ u_I \end{bmatrix} \in \mathbb{R}^3$$

Physical system

Extended State space representation Enthapy Balance + Heat losses $\sum_{\substack{i\in\mathcal{S},\ j\in\mathcal{F}_x}} \left(x_j \overline{K}_i h_i(\overline{T}_i) - \left(x_j \overline{K}_i + \sum_m \overline{ u}_{i,m} r_m ight) h_i(x_1) ight) + \overline{\lambda} (x_1 - \overline{T}_a)$ $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} T \\ R_a \\ n_f \\ n_a \\ I \end{bmatrix} \in \mathbb{R}^5 \qquad \dot{x} = \mathcal{F}(x, u) = \begin{cases} \dot{x}_1 = \frac{1}{\overline{c}_p} \left(f(x) - g(x) x_5 \right) \\ \dot{x}_2 = h(x) x_2 \\ \dot{x}_3 = -\frac{1}{\overline{\tau}_{x_3}} x_3 + \frac{1}{\overline{\tau}_{x_3}} u_1 \\ \dot{x}_4 = -\frac{1}{\overline{\tau}_{x_4}} x_4 + \frac{1}{\overline{\tau}_{x_4}} u_2 \\ \dot{x}_5 = -\frac{1}{\overline{\tau}_{x_5}} x_5 + \frac{1}{\overline{\tau}_{x_5}} u_3 \end{cases}$ Electrochemistry $-rac{\Delta g}{2\overline{F}}+rac{Rx_1}{2\overline{F}} { m ln}(Q)-rac{x_5x_2}{\overline{A}}$ Voltage degradation $\frac{k\mu_f + k_2}{\frac{x_1 - \bar{k}_3}{\bar{k}_1}} \left(e^{\frac{\bar{k}_5 x_5}{\bar{A}}} - 1 \right) \frac{1}{\bar{k}_0}$ $u = \begin{vmatrix} u_1 \\ u_2 \\ u_4 \end{vmatrix} = \begin{vmatrix} u_f \\ u_a \\ u_4 \end{vmatrix} \in \mathbb{R}^3$ Low pass filters accounting for actuators dynamics Fuel valve Air valve

• DC/DC converter

Discretization

The continuous time state space model is discretized to be used by the MPC

Optimization problem

Cost Function

Optimization problem

Constraints

Temperature (K)

Contents

- AmmoniaDrive
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Simulation setup

	Degradation-Conscious nMPC			nMPC			
 Controller properties Sampling Time Moving horizon Degradation model 	10s 30 steps ✔			10s 3 steps X			
Reference tracking	Temperature tracking: Power tracking:	10)		nt - 17 W, 50% duty cycle over 20min			
Degradation minimization	$\dot{R}_{a,ref} = 0$ %/h, w.r.t. (nominal condition					
Input and state constraints	Temperature, x_1 : Fuel input, u_1 : Air input, u_2 : Current, u_3 :	$\begin{array}{l} 973 \leq x_1 \leq 1133 K \\ 0 \leq u_1 \leq 5 \times 10^{-4} \\ 0 \leq u_2 \leq 3 \times 10^{-3} \\ 0 \leq u_3 \leq 30 A \end{array}$	mol				
Degradation Rate constraint	\dot{x}_2 :	$h(x)x_2 \le 0,45\%/h$					

*Of the $\Delta \max$ flow rate, meaning that it takes 10 minutes to fully open, or fully close fuel and air valves

Simulation setup

Reference Tracking

Temperature

 slightly higher value than the reference within the bounds

Power

- Precise power tracking
- Slower HI-LOW
 transitionc

Degradation minimization

Rate of degradation

- After the warm-up o the system the degradation rate is always lower than the nMPC case
- Conservative
 bound

Cumulated effect

• 1% reduction at the end of simulation

Long term effect

Contents

- AmmoniaDrive
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Conclusions

We developed a degradation-conscious controller using nonlinear Model Predictive Control (nMPC) for SOFCs, addressing:

- Nonlinearities and Constraints: Effectively managing the intrinsic nonlinearities and operational limits of SOFCs.
- Integrated Modeling: Incorporating both dynamic and degradation models.
- **Operational Reliability**: Ensuring accurate reference tracking for cell temperature and power output.
- **Degradation Mitigation**: Actively reducing long-term degradation by bounding its maximum admissible value and incorporating its minimization into the cost function in real time.

Open Points

- Accounting for model uncertainties, particularly in the degradation model.
- Extending the approach to ammonia-powered SOFCs in the AmmoniaDrive project.
- Developing fault-tolerant strategies for enhanced reliability.

Acknowledgements

This research has been performed as part of the project AmmoniaDrive, funded by the NWO Perspectief Programme under Grant no. P20-18/14267. (c) AmmoniaDrive 2022

Subsystem level	System level	Mission level	
Technologies SOFC (and ICE)			

Technologi	es
Solid Oxide Fuel Cell	

″UDelft

	Solid Oxide Fuel Cells: modelling, control and monitoring								
	Ref.	Application	Technology	Fuel		Modelling		Control	Monitoring
					process	dynamics	degradation		
SOFCs are electrochemical conversion devices	Koekkoek (2021)	Ships	SOFC-ICE	Ammonia	\checkmark				
that produce electricity oxidizing a fuel.	Al-Hamed and Dincer (2021)	Trains	SOFC-GT	Ammonia	\checkmark				
that produce electricity oxidizing a ruel.	Al-Hamed and Dincer (2019)	Trains	SOFC-GT	Ammonia	\checkmark				
	Ishak et al. (2012)	unspecified	SOFC-GT	Ammonia	\checkmark				
	Afif et al. (2016)	unspecified	SOFC	Ammonia		\checkmark			
	Dekker and Rietveld (2006)	Laboratory	SOFC	Ammonia		\checkmark			
	Hajimolana et al. (2012)	unspecified	SOFC	Ammonia		\checkmark			
	Hajimolana et al. (2013)	unspecified	SOFC	Ammonia				\checkmark	
Key findings	Sapra et al. (2021)	Ships	SOFC-ICE	Natural gas	\checkmark				
	van Biert et al. (2022)	Ships	SOFC	Natural gas		\checkmark		\checkmark	
Research on ammonia-fueled SOFCs is in its early	van Biert et al. (2019b)	unspecified	SOFC	Natural gas		\checkmark			
•	Sorce et al. (2014)	Laboratory	SOFC	Natural gas			\checkmark		\checkmark
stages, with natural gas being the primary	Polverino et al. (2017)	Industrial	SOFC	Natural gas			\checkmark		
reference fuel.	Malafronte et al. (2018)	Industrial	SOFC	Natural gas					\checkmark
	Dolenc et al. (2017b)	Industrial	SOFC	Natural gas			\checkmark		\checkmark
 Several models exist in the literature, addressing 	Dolenc et al. (2017a)	Industrial	SOFC	Natural gas					\checkmark
process dynamics, internal thermochemistry, and	Yang et al. (2021)	unspecified	SOFC	Natural gas					\checkmark
degradation effects.	Fardadi et al. (2010)	unspecified	SOFC	Natural gas				\checkmark	
ucgruudton eneets.	Li et al. (2011)	unspecified	SOFC	Natural gas		\checkmark		\checkmark	
There are exactly control and mentaring	Wu and Gao (2017)	unspecified	SOFC	Natural gas				\checkmark	
 There are specific control and monitoring 	Wu and Gao (2018)	unspecified	SOFC	Natural gas		\checkmark		\checkmark	
strategies designed for SOFCs, but these	Wu et al. (2020)	vehicles	SOFC	Natural gas				\checkmark	
strategies are often not combined .	Gallo et al. (2020)	unspecified	SOFC	Natural gas				<u> </u>	\checkmark

31

Subsystem level	System level	Mission level
	Combination of control and monitoring	Integration of maintenance planning

Combination of control and monitoring

Combining **fault mitigation** with **real-time health assessments** can **enhance reliability** and **performance** across various engineering applications.

Key findings

- Predominantly model-based techniques with some hybrid approaches integrating data-driven processes
- These strategies are implemented across a diverse range of engineering systems. Most of them are application specific.

Control and monitoring, current status and applications							
Ref.	Application	Properties		Monitoring	Control		
		method	type		Operation	Optimization	Degradation
Kougiatsos et al. (2022a)	Ships	FD^1	mdb	\checkmark			
Kougiatsos et al. (2022b)	Ships	FTC^2	mdb	\checkmark	\checkmark		
Gallo et al. (2020)	SOFC	FTC	mdb	\checkmark	\checkmark		
Wu and Gao (2017)	SOFC	FTC	mdb		\checkmark	\checkmark	
Obando et al. (2021)	Mech. elem.	HAC^3	mdb	\checkmark	\checkmark	\checkmark	\checkmark
Pour et al. (2021a)	Vehicle	HAC	mdb	\checkmark	\checkmark	\checkmark	\checkmark
Jha et al. (2019)	general	HAC	hybrid	\checkmark	\checkmark		\checkmark
Quan et al. (2023)	SOFC	HAC	hybrid		\checkmark	\checkmark	\checkmark
Tsoumpris and Theotokatos (2023)	Ships	$HAEM^4$	hybrid	\checkmark	\checkmark	\checkmark	
Keizers et al. (2021)	Ships	PM^{5}	hybrid	\checkmark			\checkmark
Gordon and Pistikopoulos (2022)	Chem. plant	PM	hybrid	\checkmark	\checkmark		
Gordon et al. (2020)	Chem. plant	PM	hybrid	\checkmark			
Salazar et al. (2020)	UAV	$FTHAC^{6}$	mdb	\checkmark	\checkmark	\checkmark	
Stetter et al. (2021)	Vehicle	FTHAC	mdb	\checkmark	\checkmark		\checkmark
Cieslak et al. (2021)	LTI sys.	FTHAC	mdb	\checkmark	\checkmark		\checkmark
Marier et al. (2013)	AV fleet	FTHAC	mdb	\checkmark	\checkmark	\checkmark	
Lipiec et al. (2021)	AV fleet	FTHAC	mdb	\checkmark	\checkmark	\checkmark	
Pour and Puig (2021)	Water network	FTHAC	mdb	\checkmark	\checkmark	\checkmark	\checkmark
Jain and Yamé (2020)	Wind turbines	FTHAC	mdb	\checkmark	\checkmark	\checkmark	\checkmark

FD: Fault Detection, **FTC**: Fault Tolerant Control, **HAC**: Health Aware Control, **HAEM**: Health Aware Energy Management, **PM**: Predictive Maintenance, **FTHAC**: Fault tolerant Health Aware Control.

Combination of control and monitoring

Connection of the selected studies with the control decision levels of the Ammoniadrive ship.

Key findings

- Studies typically address component-level complexities, with several methods extending to the subsystem level.
- Few works extend their strategies to the system level, often applied to simplified networked systems

Control and monitoring, decision level							
Ref.	Application	Method	Control				
			Component	$\operatorname{Subsystem}$	System		
Kougiatsos et al. (2022a)	Ships	FD	\checkmark				
Kougiatsos et al. (2022b)	Ships	FTC	\checkmark	\checkmark			
Gallo et al. (2020)	SOFC	FTC	\checkmark	\checkmark			
Wu and Gao (2017)	SOFC	FTC	\checkmark				
Obando et al. (2021)	Mech. elem.	HAC	\checkmark				
Pour et al. (2021a)	Vehicle	HAC	\checkmark	\checkmark			
Quan et al. (2023)	SOFC	HAC	\checkmark	\checkmark			
Tsoumpris and Theotokatos (2023)	Ships	HAC	\checkmark	\checkmark			
Keizers et al. (2021)	Ships	HAEM	\checkmark				
Gordon and Pistikopoulos (2022)	Chem. plant	PM	\checkmark	\checkmark	\checkmark		
Gordon et al. (2020)	Chem. plant	PM	\checkmark	\checkmark	\checkmark		
Salazar et al. (2020)	UAV	FTHAC	\checkmark				
Stetter et al. (2021)	Vehicle	FTHAC	\checkmark				
Marier et al. (2013)	AV fleet	FTHAC	\checkmark				
Lipiec et al. (2021)	AV fleet	FTHAC	\checkmark				
Pour and Puig (2021)	Water network	FTHAC	\checkmark	\checkmark	\checkmark		
Jain and Yamé (2020)	Wind turbines	FTHAC	\checkmark	\checkmark			

Decision level in the selected control and monitoring studies

Integration of maintenance planning

Smart control enhances system operation and can reduce component wear and operative costs, but **maintenance remains essential**.

Key findings

- The topic spans from maintenance tasks to smart algorithms and strategies that
 - Assess the necessity of maintenance
 - Optimize the timing and level of proactivity in scheduling maintenance activities
- The concept of Remaining Useful Life (RUL) connects maintenance and control, guiding decisions to maximize system lifespan.

Maintenance strategies						
Ref.	Type	Topic	Application	Keywords		
Kimera and Nangolo (2020)	Review	Maintenance	Ships	-		
Çağlar Karatuğ et al. (2023)	Review	Maintenance	Ships	-		
Cipollini et al. (2018)	Paper	CBM	Ships	Supervised Learning		
Alaswad and Xiang (2017)	Review	CBM	unspecified	Stochastic deterioration		
Orhan and Celik (2023)	Review	FDD	Ships	-		
Velasco-Gallego et al. (2023)	Review	FDD	Ships	Data-Driven		
Gordon et al. (2020)	Paper	FDD	Chem. Plant	Data driven		
Gordon and Pistikopoulos (2022)	Paper	\mathbf{PM}	Chem. Plant	Prescriptive Maintenance		
Keizers et al. (2021)	Paper	\mathbf{PM}	Ship	Unscented Kalman Filter		
Tiddens et al. (2018)	Review	\mathbf{PM}	unspecified	Prognostics		
Görür et al. (2021)	Paper	\mathbf{PM}	Industrial	Support vector machine		
Çağlar Karatuğ et al. (2023)	Review	PHM	unspecified	Particle Filters		
Guo et al. (2020)	Review	PHM	unspecified	Prognostics methods		

Combining monitoring strategies and control algorithms

Technologies SOFC (and ICE)

- Models for ammonia fuelled SOFCs* are not yet well-developed
- Significant gap in integrating control and monitoring activities on SOFCs

- Existing strategies for combining control and monitoring are largely application-dependent
- Strategies exist for individual components, comprehensive solutions for large-scale, interconnected systems, are lacking

Current approaches do not integrate maintenance planning with real-time control strategies that consider the system's

ሙ

0000 0000 RUL as a dynamic state influenced by operational profiles and conditions

Reference Tracking

Temperature

• nMPC temperature reference at 1120K

Degradation minimization

Rate of degradation

 Working at higher temperature reduces the rate of degradation of the nMPC case

Cumulated effect

 0.5% reduction at the end of simulation

