Degradation - Conscious Model predictive Control For Marine Solid Oxide Fuel Cells

Seminar 2024 Health Aware and Safe Control Learning & Design for Dynamic Systems

Paris, 19 -11 -2024

Contents

- Introduction
- Solid Oxide Fuel Cells
- Proposed method
- Results
- Conclusions
- Annex

Contents

- Introduction
-
-
-
-
-

Shaping the Future of Maritime Systems: Autonomy and Sustainability

Goals

Challenges

Transition to Autonomy

Achieving Zero Emissions

- Nonlinear vessel dynamics and interconnections.
- Evolving conditions: obstacles, weather, human behavior.
- Faults in sensors, actuators, and systems.
- Adhering to international regulations (e.g., COLREGS).
- Reducing environmental impact
- Managing diverse vessel types, traffic, and logistics.
- Integrating sustainable energy solutions

Safe-NET

TUDelft

Safe AutoNomous MaritimE Transport Group

"Enhance the autonomy of the maritime transport aiming to ensure safety against significant uncertainties and unexpected events"

- **1. Advancing Safe Autonomy**: Driving digitalization and automation across all maritime systems while prioritizing safety.
- **2. Sustainability and Efficiency**: Enabling greener, more efficient, and reliable maritime transport systems.
- **3. Research Methodology**: Integrating modeling, control, monitoring, and cyber-physical-human frameworks, validated through real-world applications.

AmmoniaDrive project

The AmmoniaDrive project aims to reduce shipping industry carbon emissions by developing a new ship paradigm that will be fueled by ammonia.

- Who? AmmoniaDrive consortium: 6 **universities**, 3 **research centers** and 10+ **private companies**
- What? **Design** a new **ship concept** fueled by ammonia
- Why? **Decarbonize** shipping industry
- How? Development of a **hybrid powerplant** based on **SOFC-ICE** technologies

Maintenance-aware multi-level control for ammonia-powered ships

Promoter Prof. dr. R.R. Negenborn, TU Delft **Daily supervisor** dr. Vasso Reppa, TU Delft

 \widetilde{T} UDelft

The main goal is to develop smart strategies to **control** and to **monitor** the **operation** of the Ammoniadrive novel ship, which includes many **non-proven subsystems** in new configurations.

Subsystem Level

SOFC.

Electric Current

e

Air In

Fuel In

 \Rightarrow

Contents

-
- Solid Oxide Fuel Cells
-
-
-
-

Solid Oxide Fuel Cells

SOFCs are **electrochemical conversion devices** that generate **electricity** by **oxidizing** a **fuel**, such as hydrogen.

Unlike PEM fuel cells, they do not require pure hydrogen and can use **fuels** like **H₂, CH₄, NH₃, and hydrocarbons**.

They operate at **high temperatures** and achieve **efficiencies up to 60%**, or higher in combined systems.

Applications:

- **Power Plants**
- **Vehicles**
- **Ships**

Challenges*

Nonlinear Behavior

The mismatch between fast electrochemical reactions and slow thermal dynamics in SOFCs leads to nonlinear behavior, with vast dynamics and limited adaptability to rapid load changes.

Dynamic tracking

The system's complexity and operational constraints result in slow dynamic performance, making efficient tracking of both temperature and power generation highly challenging for SOFCs.

Longevity and degradation

Thermal cycling, material fatigue, chemical reactions, and the buildup of impurities in the fuel and oxidant contribute to cell degradation over time, reducing their longevity.

*****Associated Literature review in annex

 \overline{n}

Dynamical model

SOFC dynamics is governed by two main processes: the **energy balance**, which determines cell temperature, and the **electrochemical reactions**, which dictate **voltage output**.

Various models exist in literature, for our study, we utilized a reduced-order model (ROM)*. Key features:

- **Constant temperature** throughout the cell \blacksquare
- Accurate **chemical process representation** while \mathbf{r} maintaining model efficiency.

***A reduced-order model of a solid oxide fuel cell stack for model predictive control** L. van Biert et al., 2022

Dynamical model

Dynamical model

Electrochemistry Ohmic losses Nernst Voltage Reaction Quotient fuel air

Physical constraints

$$
\mu_f = \frac{I}{2\overline{F}\left(4n_{\text{CH}_4} + n_{\text{CO}} + n_{\text{H}_2}\right)}, \quad 0 \le \mu_f \le 1 \qquad \text{Fullization}
$$
\n
$$
\mu_a = \frac{I}{4\overline{F}n_{\text{O}_2}}, \quad 0 \le \mu_a \le 1 \qquad \text{Air utilization}
$$

Degradation model

SOFC degradation is influenced by **operational factors** such as **temperature cycles** and **current** demand, which affect long-term performance and **lead to failure**.

Voltage degradation represents the **increase in voltage losses** due to cell ageing and suboptimal operation.

The selected experimental model* relates the rate of increase in the Ohmic resistance of the cell with its current state of operation, namely:

- Cell internal temperature \mathbf{r}
- Current ٠
- Fuel utilization ٠

***A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization** V. Zaccaria et al., 2016

Contents

-
-
- Proposed method
-
-
-

Control Objective

Nonlinear Behavior

Addresses the inherent nonlinear behavior and complexity of SOFCs by accounting for the interaction between fast electrochemical reactions and slow thermal dynamics

Dynamic tracking

Efficient electrical power load tracking and precise cell internal temperature management, while ensuring that operational constraints are met throughout varying conditions.

Longevity and degradation

Incorporate the degradation model to optimize system operation at specific working points, reducing degradation and enhancing the SOFC's lifespan.

Degradation-Conscious nMPC

Extended State space representation

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} T \\ R_a \\ n_f \\ n_a \\ I \end{bmatrix} \in \mathbb{R}^5
$$

$$
u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_f \\ u_a \\ u_I \end{bmatrix} \in \mathbb{R}^3
$$

Physical system

Extended State space representation Enthapy Balance + Heat losses $\sum_{\substack{i\in\mathcal{S}_i\j \in \mathcal{F}_x}} \left(x_j\overline{K}_ih_i(\overline{T}_i) - \left(x_j\overline{K}_i + \sum_m \overline{\nu}_{i,m}r_m \right)h_i(x_1) \right) + \overline{\lambda}(x_1 - \overline{T}_a)$ $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} T \\ R_a \\ n_f \\ n_d \\ 1 \end{bmatrix} \in \mathbb{R}^5$
 $\dot{x} = \mathcal{F}(x, u) = \begin{cases} \dot{x}_1 = \frac{1}{\bar{c}_p} \left(\underbrace{\hat{w} - \mathbb{Q}(x)x_5}_{\bar{c}_p} \right) & \xrightarrow{\text{Electrochemistry}} \frac{\sum\limits_{i \in \mathcal{I}} \sum\limits_{i \in \mathcal{I}} \sum\limits_{i \in \mathcal{I}} \sum\limits_{i \in \mathcal{I}} \sum\limits_{i \$ $-\frac{\Delta g}{2\overline{F}} + \frac{\overline{R}x_1}{2\overline{F}}\ln(Q) - \frac{x_5x_2}{\overline{A}}.$ Voltage degradation $\frac{k(\mu_f)+k_2}{\frac{x_1-\bar{k}_3}{\bar{k}_3}}\bigg(e^{\frac{\bar{k}_5x_5}{\bar{A}}}-1\bigg)\,\frac{1}{\bar{k}_0}\,.$ $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} u_f \\ u_a \\ \vdots \end{bmatrix} \in \mathbb{R}^3$ Low pass filters accounting for actuators dynamics

- Fuel valve
- Air valve
- DC/DC converter

Discretization

The continuous time state space model is discretized to be used by the MPC

Optimization problem

Cost Function

Optimization problem

Constraints

Contents

-
-
-
- Results
-
-

Simulation setup

*Of the Δmax flow rate, meaning that it takes 10 minutes to fully open, or fully close fuel and air valves

Simulation setup

Reference Tracking

Temperature

• slightly higher value than the reference within the bounds

Power

- Precise power tracking
- Slower HI-LOW transitionc

Degradation minimization

Rate of degradation

- After the warm-up o the system the degradation rate is always lower than the nMPC case
- Conservative bound

Cumulated effect

• 1% reduction at the end of simulation

Long term effect

Contents

-
-
-
-
- Conclusions
-

Conclusions

We developed a **degradation-conscious controller** using **nonlinear Model Predictive Control** (nMPC) for SOFCs, addressing:

- **Nonlinearities and Constraints**: Effectively managing the intrinsic nonlinearities and operational limits of SOFCs.
- **Integrated Modeling**: Incorporating both dynamic and degradation models.
- **Operational Reliability**: Ensuring accurate reference tracking for cell temperature and power output.
- **Degradation Mitigation**: Actively reducing long-term degradation by bounding its maximum admissible value and incorporating its minimization into the cost function in real time.

Open Points

- Accounting for **model uncertainties**, particularly in the **degradation model.**
- **Extending** the approach to **ammonia-powered SOFCs** in the AmmoniaDrive project.
- Developing **fault-tolerant strategies** for enhanced reliability.

Acknowledgements

This research has been performed as part of the project AmmoniaDrive, funded by the NWO Perspectief Programme under Grant no. P20-18/14267. (c) AmmoniaDrive 2022

Technologies Solid Oxide Fuel Cell

 \mathbf{r}

 \mathbf{u}

 \sim

Combination of control and monitoring

Combining **fault mitigation** with **real-time health assessments** can **enhance reliability** and **performance** across various engineering applications.

Key findings

- **Predominantly model-based techniques** with some hybrid approaches integrating data-driven processes
- **EXECUTE:** These strategies are **implemented** across a **diverse range** of engineering systems. Most of them are **application specific**.

FD: Fault Detection, **FTC**: Fault Tolerant Control, **HAC**: Health Aware Control, **HAEM**: Health Aware Energy Management, **PM**: Predictive Maintenance, **FTHAC**: Fault tolerant Health Aware Control.

Combination of control and monitoring

Connection of the selected studies with the control decision levels of the Ammoniadrive ship.

Key findings

- **Studies typically address component-level** \mathbf{r} **complexities**, with several methods extending to the subsystem level.
- Few works extend their strategies to the **system** \blacksquare **level**, often applied to **simplified networked systems**

Decision level in the selected control and monitoring studies

Integration of maintenance planning

Smart control enhances system operation and can reduce component wear and operative costs, but **maintenance remains essential**.

Key findings

- The topic spans from **maintenance tasks** to smart \mathbf{r} **algorithms** and **strategies** that
	- **Assess the necessity** of maintenance
	- **Optimize the timing** and level of **proactivity** in scheduling maintenance activities
- **The concept of Remaining Useful Life (RUL)** $\mathcal{L}_{\mathcal{A}}$ **connects maintenance and control**, guiding decisions to maximize system lifespan.

Combining monitoring strategies and control algorithms

Technologies SOFC (and ICE)

- Models for **ammonia fuelled SOFCs*** are not yet well-developed \mathbf{r}
- Significant gap in **integrating control and monitoring** activities on SOFCs \mathbf{r}

- Existing strategies for combining control and monitoring are **largely application-dependent**
- **Strategies exist for individual components**, comprehensive solutions for **large-scale, interconnected systems**, are **lacking**

Current approaches do not integrate maintenance planning with real-time control strategies that **consider the system's** \mathbf{r} **RUL as a dynamic state influenced by operational profiles and conditions**

Reference Tracking

Temperature

• nMPC temperature reference at 1120K

Degradation minimization

Rate of degradation

• Working at higher temperature reduces the rate of degradation of the nMPC case

Cumulated effect

• 0.5% reduction at the end of simulation

