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Artificial Intelligence (Al) Domains



Al

Artificial Intelligence (as of today): Detection and Exploitation of useful patterns and trends in data
—>Decisions

- Predictions
- Automated Actions

Major Domains C1: Computer vision & Self Driving Cars

person

motorcycle

" ’ rce : idia, L. Fridman .
DEA%[%Y"TEG” QO e, (RA’\ Source : Nvidia, dman et al 5



Domains of Al
C2. Image processing: Shape & Object Detection
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Predictive Maintenance
Fault Detection (Roller Bearing)

Zhang et al.
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Domains of Al

C3. Filtering and Denoising : Auto encoders
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Encoder Decoder
Link: Denoising autoencoder for Image classification

End to End learning: Fault detection and Prediction:
Unknown Model, Environment. (JHA et al. 2017)

Learning in Black Box

—> BIack Box
Feature extraction,
selection, -

Unsupervised

! 231 Learning
4 POLYTECH® @ UNIVERSITE ( Time 9
! ngABfdkercoders: MATLAB C DELORBARIE \ QAA In puts
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https://hackernoon.com/a-deep-convolutional-denoising-autoencoder-for-image-classification-26c777d3b88e
https://fr.mathworks.com/matlabcentral/fileexchange/71115-denoising-autoencoders

Domains of Al
C3. Particle Physics, Intelligent control (adaptive) of systems, Robotics: Function Approximation
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Sirunyan et al. 2019, Physical Review letters
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Domains of Al

R1: Time Series Forecasting, Trend Prediction, Event Prediction

0 20 40 60 80 100 120 140 160

Long terms traffic Speed prediction

Ma, Xiaolei, et al

Training:

Neural
Network

Network learns generic object tracking

y Video Fram
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Conditioning ground truth Prediction

2013 2014 2015 2016 2017

Human Motion Prediction
Martinez et al., 2016

Actual Train Predict
®  Outof-Sample Forecast

Test Pradict

Financial market prediction (Dixon et al.)

Bearingl 3
Failure timeé
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Previous frame Neural =2 .
Network id—'RUL P

Frozen weights Current frame e e sl R Current time

tracking output ) _ ! L . H ! i

Current frame 4000 8000 12000 16000 20000 24000

Network tracks novel objects

Component Failure Prediction (Yoo et al., 2018)
(no finetuning)

racking and Prediction

A

Held et al.



Domains of Al

R2 : Recommendation Systems

« Candidate Profiling,

» Scoring , similarity measures,

* Prediction

.
It

, POLYTECH® UNIVERSITE
NANCY @ DE LORRAINE

(AN

3 Translate

» google Translate

* voice recognition

» text prediction

» voice to text and vice versa
» echo cancellation

Google home Mini
Alexa

Sequence prediction often involves forecasting the next
value in a real valued sequence.

10



Domains of Al
Reinforcement Learning: Towards human level :

control ((Finding the optimal way of doing a given task)
prediction

Adaptation (Robots That Can Adapt like Animals, Nature)

It might
wistozee ook goofy ...
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Types of Learning
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Learning : Supervised vs Unsupervised

Machine Learning: Study of algorithms that improve their performance, for a given task, with more
experience.

Training data: {y,X}=(y,X)1, (y)X)27"”' (yrx)N

Function space: F(x,w)
and constraints on function

S, w¥) Cw)

Teach a machine to learn the mapping y = f(x,w?*)

Optimal parameters or “BEST “parameters

POLYTECH® UNIVERSITE (
P @ DE LORRAINE  { QA[\
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Learning : Supervised

Activation function
Sigmoid

Training data: {y,x}=(y,x)1, (YyX)Z""'- (y’X)N

Function space: F(x,w)
and constraints on function

Teach a machine to learn the mapping y = f(x,w?*)

Supervised learning:

* Training of intelligent agent under ‘supervision’.

* Model known, environment known.

* Data sources, labels known!

* An algorithm is employed to learn the mapping function from the input variable (x) to the output variable (y)
and optimal function parameters: thatis y=f(x, w*)

* Objective: Mapping function estimated accurately—> Agent Intelligent! WHY??

Trained
New Data (x) Model > Prediction data (y)

Intelligent
Agent

s , ,
aJ ronrmeer @ (AN
L



Learning : Unsupervised

Unsupervised learning = Available input data (X) and NO output .

« LEARNING DONE IN AUTONOMOUS WAY.

» The goal for unsupervised learning is to model the underlying structure or distribution in the data in
order to learn more about the data.

Example: K-mean clustering (using distance measures , similarity index, other ranking algos)

6 Cluster K-Means

* .
y A - . .
. . . . There is no correct answer and there is no teacher.
e,
T Algorithms are left to their own to discover and present the interesting
_’:: LA \ structure in the data.

V. , .
aJ rosrreer @ Can
LJ



T weights / GeV

Lweights - Bkg

Remark: Most learning (in practice) : supervised.
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Introduction to Deep Learning
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T weights / GeV

Lweights - Bkg

Remark: Most learning (in research) : Unsupervised, RL

Remark: Most learning (in practice) : supervised.

6 Cluster K-Means
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Basic Processes: Classification and Regression

| PErson

t Linearly separable 1 Not linearly separable
?
0 4" o o
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Classification : Prediction of Categorical variables (Labels)

Multi-class Classification

Inter class: Maximum separation |

Inter class: Minimal variance

~
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-
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-
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-
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v
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Basic Processes: Regression
Regression: Prediction of numerical or continuous output variables

Classification Regression
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Test: R=0.90828

< Data

* Forecasting of object based upon the past dynamics (behavior), historical trends observe

» Sequence to sequence Model = next sequence prediction, long time prediction.
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Basic Processes: Regression
Regression: Prediction of numerical or continuous output variables

Y=WX, + WX, + W Xy.ooooo+ b

m

Classification

Regression
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* Forecasting of object based upon the past dynamics (behavior), historical trends observe

* Sequence to sequence Model = next sequence prediction, long time prediction.
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Ordinary Least Square (OLS) based regression

y=c+m-x P
(x,y); i=123..n \ 3
=y S
« Error term e; =y; — (c + mx;) _f*ﬂ < S\
y1 T - _12 e ] 5 = ez o
« Objective : Minimize the sum of square of errors > ® " /l
- . .
) Minimize: Z (y — ]..)2
e, +e,+esz..e, -5

Least Squares Method ="

: 2 n oo 2 - / Xi
e = z()’i —(c + mxi)) y-intercept X
=1 =1
n
X = i=1 Xi
n — —
~ i=1(xi_x) X(Yi_Y) n
= = 2
¢ =y—mx v = 2=
n
EA?WI:_YY TEEE @ BEI"-’EEE‘I‘T'EE CQA’\ JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr 21



Relation AI, ML and DL

Example:
Shallow

autoencoders

Representation learning

Machine learning

Source: Deep Learning Deep Learning

. ’ EAC:JCI:_YY TECH’ @ gg'l‘_’[fggﬂﬁl_: rl?A,\/ Introduction to Deep Learning
\“

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Deep learning

Machine Learning techniques for Al

Traditional CV @ Deep Leaming

Naive Bayes,

Kernel Density Estimation
Rule Based,

Decision Trees,

Random Forests

Error Rate

Genetic Algorithms

Support vector machines (1990-2007): very promising, better
than NNs....till 1998.

Neural networks (NNs) (1960-1986, 1986-1998, 1998-2007)

Deep Neural Networks (1998,DNNs) : CNNs revolutionized NN based works,

Enter 2007,

e Availability of data & data acquisition methods,
e GPU based distributed calculations

* Huge community of developers

e Surgein DNN

s , ,
oS ronrmeer @ (AN i
LJ

Shallow




Learning Using Deep Neural networks : Supervised Learning

In this lecture, we look at Neural Networks and

Mechanism of Supervised type learning .

Input Features/ @

Features

Input data/ Z —

lnputs 2~ Y% | TriErrr

Activation function
Sigmoid
Targets /
Labels
* NN output may or may
not be equal to the target.
Why?
‘3 EA?\I[I:_YY TECH’ @ BEII‘.’EFF?I?HEE CQAA Introduction to Deep Learning

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Neuron

POLYTECH® UNIVERSITE (
o @ DE LORRAINE  { QA[\

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Neuron

* A neuron only fires if its input
signal exceeds a certain amount

(the threshold) in a short time period.

Input 1

Input 2

Input 3

Huang, Anping, et al. 2017.

s , ,
aJ rosrmeer @ms (AN
LJ

Dendrites Action

Pre-synaptic neuron

Post-synaptic neuron , +ion
potential

Axon

Dendrites

Neuron

Synapses

Introduction to Deep Learning
JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Neuron

POLYTECH® UNIVERSITE
NANCY @ DE LORRAINE
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Introduction to Deep Learning
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The Neuron

Input Value 1
Independent Variable

1 H

Neuron
Input Value 2
Independent Variable 2
Output Value

Output Data :
Input Value 3 ° « Continuous Values
Independent Variable 3

» Discrete Values (Binary classes - Yes/No..)
« Standardization of input data (Same Scale)  Categorical Variables (very small, small, large,

« Data preprocessing

’ POLYTECH:®
.D NANCY

UNIVERSITE
DE LORRAINE

(AN

very Large)

Introduction to Deep Learning
JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Neuron

Input Value 1 Q
1

Independent Variable

Output Value 1

¥ Neuron Output Value 2

Input Value 2
Independent Variable 2

Input Value 3
Independent Variable 3

« Standardization of input data (Same Scale)
« Data preprocessing

Output Value 3

Same Observation
| Single Observation ] | (Input data, Output Lablel | Single Observation

4 POLYTECH® YUNIVERSITE ( Y _ _ Y
. NANDY DE LORRAINE QAA Introduction to Deep Learning
y‘ \

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Neuron: Basic Perceptron w,_ . Synaptic weight from unit m to unit i

ﬂi Threshold for unit i

2

Threshold function Output Value

eEach neuron has weighted inputs from other neurons.

e The input signals form a weighted sum.

|f the activation level exceeds the threshold, the
neuron “fires”.

«Each neuron has a threshold value.

4 POLYTECHS UNIVERSITE f Introduction to Deep Learnin
. , B @ DE LORRAINE 4 QA[\ p g

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Attificial Neural Networks (ANNs) Y =WX WX, + WXy + b

m

= wx, +b

i=1 !

Output Value

* Each hidden or output neuron has weighted input connections from each of the units in the preceding layer.

* The unit performs a weighted sum of its inputs, and subtracts its threshold value, to give its activation level

4 POLYTECHS UNIVERSITE f Introduction to Deep Learnin
.D e o @ DE LORRAINE QA’\ ucti p ing i

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Artificial Neural Networks (ANNSs)

NANCY

Output Value

 Activation level is passed through an activation function ¢(x) to determine output

POLYTECH® @ ggll\_flfggﬂﬁla (QAA Introduction to Deep Learning
\“

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

32



.
It

)

Artificial Neural Networks (ANNs)

POLYTECH
NANCY

@ (N

3"d Step

Output Value

Introduction to Deep Learning
JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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The Artificial Neural Network (ANN)

—————————————

Activation function Output Value

Sigmoid

EA?\' [I:_YY TECH’ @ gEIIYI:FF?I;SHEE f Q A’\ Introduction to Deep Learning
\ -0 \

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Activation functions (discussed later)

1.0~
0.8 1
0.6
0.4 1
0.2 1

0.0 1

sigmaid(x}

Threshold function (binary step function)

1.0 1

o o o o
Pt = o el
L L L L

-
=
1

—8

-6 -4 =2 0 2
X

4

6

8

POLYTECH®
NANCY

6 -4 -2 0 2
X

Sigmoid function

4

@ (N

:

g

tanh(x)

-8 -6 -4 =2 0 2 A 6

RelLu (Rectified Linear Unit)

1.0 1

0.5 1

0.0 1

—0.5 +

_1.D .

TanH / Hyperbolic Tangent

Introduction to Deep Learning
JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Multi Layered (Deep) Feed Foreword Neural Networks

Output Nodes

3-Layer Network
has
2 active layers

Hidden Nodes

Input Nodes

t t t #

I1 12 I3 14

. ’ EA?\' [I:_YY TECH’ @ HE"E’.EEEL‘.EE Q A’\ Introduction to Deep Learning
\"

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Multi Lavered (Deep) Feed Foreword Neural Networks
Hidden Layers

7~ I AR N A

PP
ki

u =f(Wix+6:) uy=f(Wou; +8;) uz=f(Wsuy+603) ugs=f(Waus+04)

» These are fully connected layers, but need not be.

POLYTEC H’ @ iy 'd QA,\ / Introduction to Deep Learning
\.;‘ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

Outputs
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Multi Layered (Deep) Feed Foreword Neural Networks
Hidden Layers

hidden layer
(n =15 neurons)

output layer

Inputs
2 Outputs

'
input layer

(THA neurons)

» Outputs can be multiple (multiple targets). See softmax activation later.

. ' EA?\I[I:_YYT ECH’ @ HE"E’DEEEHEE KQA,\ Introduction to Deep Learning
\"

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Output Nodes

Hidden Nodes

’ EA?\I é_YY TEGH @ UNIVERSITE Q A’\ Introduction to Deep Learning
. \“ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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° ‘ Output Nodes
N

Sl e
Q/A\§ ®

Input Nodes ‘

Hidden Nodes

’ ’ 3 UNIVERSITE : :
EA?\JEI;_YY TECH @ DE LORRAINE IQA’\ Introduction to Deep Le_arnlng _ .
. \“ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Basic functioning of NNs

POLYTECH® UNIVERSITE
o @ DE LORRAINE  { QA’\

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorra

ine.fr
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How do NNs work : Illustrative Example Apartment Price

Size (m?
Price

Distance from station b

(Km)
Building age
(years)
POLYTECH’ @ BEII‘.’I:FFI;I;SEIEE rlQAA Introduction to Deep Learning
Y \.4‘ \ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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How do NNs work : Illustrative Example Apartment Price

Size (m? Q
Distance from station Q
(Km)

Building age
(years)

O

O
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How do NNs work : Illustrative Example Apartment Price

.
It

Distance from station

)

Size (m?

(Km)

Building age

(years)

POLYTECH
NANCY
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How do NNs work : Illustrative Example Apartment Price

y
Y
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Size (m \\ b LT AN
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Distance from station Q*'\ \*/
~
(Km) Noa
\ ~
Building age : v\ >
g ag N W\

(years) NN

s , ,
aJ ronmeer @ Can
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Price

eEach neuron has weighted inputs from other neurons.
eThe input signals form a weighted sum.

«If the activation level exceeds the threshold, the neuron
“fires”.

eEach neuron has a threshold value.
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How do NNs work : Illustrative Example Apartment Price

O

Size (m?

Distance from station
(Km)

Building age Q Q

(years)
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How do NNs work : Illustrative Example Apartment Price

Size (m?

Distance from station
(Km)

/
Building age Q

(years)

. ' EA?“éyY TECH’ @ BEIIYEQELTIEE (?AA Introduction to Deep Learning
\"

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

m

i=l1

+b)

47



)

How do NNs work : Illustrative Example Apartment Price

POLYTECH
NANCY

@ Can
\"

" wx + b)

=1 i

Several training, leads to optimal sets of
weights, that determine the non-linear
relationship between inputs and targets.

How do weights adapt?
Or,
How do NNs learn?

Introduction to Deep Learning
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Learning in NNs
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How do NNs learn?
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» Consider one data input

(RN

»

)A/ y

».

Input 1
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How do NNs learn?

POLYTECH®
NANCY

» Consider a data input
» Feed in the information (foreword propagation)

@ (AN

A

Introduction to Deep Learning
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» Consider a data input
* Feed in the information (foreword propagation)
» Calculate the individual loss wrt actual value.

Note: Objective to minimise the cost function. Find optimal
weights.

(RN

Introduction to Deep Learning
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» Consider a data input

* Feed in the information (foreword propagation)

» Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.
« Information can be fed back, to adjust the weights.

(RN

Introduction to Deep Learning
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» Consider a data input

* Feed in the information (foreword propagation)

» Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.
« Information can be fed back, to adjust the weights.
» Repeated with other data inputs.

(RN
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Batch update ( One iteration)

» Consider a data input

« Feed in the information (foreword propagation)

» Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.

* Information can be fed back, to adjust the weights.

* Repeated with other data inputs.

>

’ POLYTECH @ UNIVERSITE s ? A’\ Introduction to Deep Learning d1
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Batch update ( One iteration)

» Consider a data input

« Feed in the information (foreword propagation)

» Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.

* Information can be fed back, to adjust the weights.

Input 1 Input2 Input 3 Input 4 Input 5 Input 6
ID :
POLYTECH® @ BE"E’&??HF;E f Introduction to Deep Learning
. Y \:‘?A,\ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr g2



Batch update ( One iteration)
» Consider a data input

* Feed in the information (foreword propagati
» Calculate the loss with respect to its actual
Note: Objective to minimise the cost function.
weights.

* Information can be fed back, to adjust the weights.

1
Ew = ZE()’ ~ 3’)2

Update all the weights

v

Input 1 Input2 Input 3 Input 4 Input 5 Input 6
ID :
POLYTECH® @ ggw&ggg& f Introduction to Deep Learning
. Y \:‘?A,\ JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr gs



&
It

)

POLYTECH
NANCY

(L

UNIVERSITE
DE LORRAINE

(RN

Batch update ( One iteration)

» Consider a data input

* Feed in the information (foreword propagation)

« Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.

» Information will be fed back, to adjust the weights.

* Repeated with other data inputs.

1
. N
* Total loss = cost function Ee =2 5 y—9)

« The weights adjusted ‘at the same time’ using total loss.

Update all the weights

Input 1 Input2 Input 3 Input 4 Input 5 Input 6

Introduction to Deep Learning
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One epoch = training done on entire data set once.
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Batch update ( One iteration)

» Consider a data input

* Feed in the information (foreword propagation)

« Calculate the loss with respect to its actual value.

Note: Objective to minimise the cost function. Find optimal
weights.

» Information will be fed back, to adjust the weights.

* Repeated with other data inputs.

1
. N
* Total loss = cost function Ee =2 5 y—9)

« The weights adjusted ‘at the same time’ using total loss.

Update all the weights

Input 1 Input2 Input 3 Input 4 Input 5 Input 6
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One epoch = training done on entire data set once.
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Objective : To minimize this loss,

1
Ew = ZE()’ ~ 3’)2

Update all the weights

v

Input 1 Input2 Input 3 Input 4 Input 5 Input 6

Introduction to Deep Learning
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One epoch = training done on entire data set once.
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Objective : To minimize this loss, find optimal sets of weights.

How to minimise the loss and update the weights??

1
Ew = ZE()’ ~ 3’)2

Update all the weights

v

Input 1 Input2 Input 3 Input 4 Input 5 Input 6

Introduction to Deep Learning
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(Gradient Descent

» GD: iterative method of finding minimum of any given function. Why iterative method preferred? s Zl(y 5
tot — 2
* NNs involve non-linear functions, close solutions of min of loss functions not available.

* Objective: To minimize the loss function (cost function) or mean error between neural network output and actual values
(chosen by user, Example: mean square error) .

POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
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Gradient Descent

» GD: iterative method of finding minimum of any given function. Why iterative method preferred?

1
Eie = ZE(J’ - y)z

* NNs involve non-linear functions, close solutions of min of loss functions not available.

» Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,

Example: mean square error) .

* Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

W N
\\\“m 4;/ ll )
|

POLYTECH® UNIVERSITE (
o @ DE LORRAINE  { QA[\

!

Grstﬂ\
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(Gradient Descent

» GD: iterative method of finding minimum of any given function. Why iterative method preferred? s Zl(y 5
tot — 2

* NNs involve non-linear functions, close solutions of min of loss functions not available.

» Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,
Example: mean square error) .

Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

Basic steps: 1\
Given the loss function  J(w,b) OJSL i hod 0

« Compute the slope (gradient) that is the first-order
derivative of the function at the current point. fnomerntd
* Move-in the opposite direction of the slope increase

from the current point by the computed amount.

0 (J(w,b)) &

oW

_,0(J(w,b))
b«b-a =7 (& FWM)

A ’ POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
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One epoch = training done on entire data set once.
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Batch Gradient Descent
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Saw earlier: Weights were updated using total loss of a data batch =» Batch
GD.

1
Ew = ZE()’ ~ 3’)2

Update all the weights

v

Input 1 Input2 Input 3 Input 4 Input 5 Input 6
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(Gradient Descent

GD: iterative method of finding minimum of any given function. Why iterative method preferred? s Zl(y 5
S tot — 2
NNs involve non-linear functions, close solutions of min of loss functions not available.

Objective: To minimize the loss function or mean error between neural network output and actual values (chosen by user,
Example: mean square error) .

Intuition behind GD: Climbing down the hill to find its bottom or minimum value given by best parameters.

Basic steps: 23

Given the loss function  J(w,b)

0.20

« Compute the slope (gradient) that is the first-order

derivative of the function at the current point. gor “\
g |
* Move-in the opposite direction of the slope increase om0l |
\
from the current point by the computed amount. \\
0.05
a J W b 1-1___'__"_'—+—-—¢—-—-—-
g O OW,B)
A" % %% 2 4 6 8 10 12 14
Epochs
hbeb-a 0 (J(w,D)) a learning rate.
ob What happens when learning rate is very low?
’D - What happens when learning rate is very high?
POLYTECH’ @ gﬁ"ﬂ’ﬁéﬂﬁz Introduction to Deep Learning
. Y \:‘QAA JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



.
It

)

(Gradient Descent

When learning rate too low = slow convergence.

When learning rate too high = minima will be overshot =» slow or no convergence.

Learning rate is a Hyperparameter.

It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.

GD works well when the total loss function is a convex function.

(nt
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(Gradient Descent

* When learning rate too low = slow convergence.

* When learning rate too high = minima will be overshot = slow or no convergence.

» Learning rate is a Hyperparameter.

It must be fine tuned. Neither too high, nor too low. We see hyperparameter tuning later.
* GD works well when the total loss function is a convex function.

* What happens when function is non-convex? /r

(nt

POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
\“
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Gradient Descent

* GD works well when the total loss function is a convex function.

* What happens when function is non-convex?

Usually, the case, when millions of data are considered for training, (o rwm)
with millions of parameters (weights in many layers of NNs).

Source: Taig et al.

. ' EA?\I[I:_YYT ECH’ @ HE"E’DEA‘EHEE (?A,\ Introduction to Deep Learning 76
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Stochastic Gradient Descent

« GD : Consider a batch (set) of training data samples:

+ calculate loss

» update weights based on total loss.
« Curse of dimensionality: Need more data for training, updating for whole set - extremely slow updates.

» To avoid getting stuck in local minima, a certain “jittering” or noise /exploration is needed.

POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
\“

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr
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Stochastic Gradient Descent

» Stochastic GD (SGD) : Updating weights after each training data sample.

« ‘“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

» Probability to get unstuck from local minima and converge towards global minima.

Update all the weights

One epoch = training done on entire data set once.

v

» Input 1 Input 2  Input 3 Input 4 Input 5 Input 6
.3 EA?\' [|:_va ECH’ @ HE"E’.EEEL‘.EE C Q A’\ Introduction to Deep Learning 78
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Stochastic Gradient Descent

» Stochastic GD (SGD) : Updating weights after each training data sample.

« ‘“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

» Probability to get unstuck from local minima and converge towards global minima.

Update all the weights

One epoch = training done on entire data set once.

v

» Input 1 Input 2  Input 3 Input 4 Input 5 Input 6
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Stochastic Gradient Descent

» Stochastic GD (SGD) : Updating weights after each training data sample.

« ‘“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

» Probability to get unstuck from local minima and converge towards global minima.

Update all the weights

One epoch = training done on entire data set once.

v

Input 1 Input2 Input 3 Input 4 Input 5 Input 6
‘3 EA?\lé'YYT ot @ BEII‘.’EFEI?HEE CQA[\ Introduction to Deep Learning a5

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Stochastic Gradient Descent

» Stochastic GD (SGD) : Updating weights after each training data sample.

« ‘“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

» Probability to get unstuck from local minima and converge towards global minima.

Update all the weights

One epoch = training done on entire data set once.

v

» Input 1 Input2 Input 3 Input 4 Input 5 Input 6
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Stochastic Gradient Descent

» Stochastic GD (SGD) : Updating weights after each training data sample.

« ‘“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

» Probability to get unstuck from local minima and converge towards global minima.

» |terate until convergence detected.

Update all the weights 2

One epoch = training done on entire data set once.

» Input 1 Input2 Input 3 Input 4 Input 5 Input 6
.3 EA?\lé'YYT ot @ gEIIYIZEEI;SHEE C?A’\ Introduction to Deep Learning &
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Stochastic GD (SGD) : Updating weights after each training data sample.

“Jittering” Provided by SGD : presence of diverse and many data inputs and
update done for each data inputs until convergence.

Probability to get unstuck from local minima and converge towards global minima.

Iterate until convergence detected.

§
é

Batch GD : stores all data loss, updates after all data loss taken into

= account.
‘ SGD : updates after each data sample.
=G * less time consuming
® « NN updated after each data,
N « memory not allocated to all data at once.
" :‘ — l » but, cannot vectorize the computations: (as only one
o data input treated once).
Batch GD Stochastic GD

What happens when millions of data samples? but limited memory

resources?

A ’ POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
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Mini batch GD

« Blends advantages of both GD and SGD.
* Mini-batches of fixed size are created.
In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights
5.

POLYTECH® UNIVERSITE r
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Mini batch GD

« Blends advantages of both GD and SGD.
* Mini-batches of fixed size are created.
In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1-4 for all the mini-batches

POLYTECH® UNIVERSITE (
o @ DE LORRAINE  { ?A[\
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Mini batch GD

« Blends advantages of both GD and SGD.
* Mini-batches of fixed size are created.
In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1-4 for all the mini-batches.
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Mini batch GD

« Blends advantages of both GD and SGD.
* Mini-batches of fixed size are created.
In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the

weights

5. Repeat steps 1-4 for the mini-batches we created.

0 (J(w,b))
Great!! We now know how NNs update weights .....using: Wew-a o w
batch-GD, SGD or mini batch SGD....but... 8 (J(w.b))
b«—b-a A b,
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Mini batch GD

« Blends advantages of both GD and SGD.

* Mini-batches of fixed size are created.

In one epoch:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the
weights

5. Repeat steps 1-4 for the mini-batches we created.

Great!! We now know how NNs update weights .....using:
batch-GD, SGD or mini batch SGD....but...
how to calculate the gradient of the cost function!!

POLYTECH® UNIVERSITE (
o @ DE LORRAINE  { QA[\

w <—w—05a (J(W,))
oW
b <—b—aa (J(w,b))
ob

Introduction to Deep Learning
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Back propagation

 Intuition: the global error is backward propagated to network nodes, weights are modified proportional to their contribution

» Objective: Calculate rate of change of Error with respect to each weights, to correct the weights.

» Backpropagation rediscovered in 1986, efficient way of propagating backwards the error gradient and updating the weights.

but first, Forward Propagation : Illustration using 2 Hidden layer Deep NN.

Loss

POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
\“
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Forward propagation
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Forward propagation

ce)
z= Wz

X € lR"‘
LW e IR
2e R™

hxd

POLYTECH® UNIVERSITE (
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Forward propagation

Loss

z= W% W= dce)

X € lR"‘
i,\)“’ c rRhﬁd
2e R™
EA?\I[I:_YY TECH’ @ BEII‘.’EFF?I?HEE QAA Introduction to Deep Learning
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Foreword propagation

Loss

2(3:9)

1

Zz = Nt = 95(%) ‘ﬁ\ = l,\)twh L

x%liid
Ly e IR
2e R™
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Back propagation

» Calculate the gradient with respect to all parameters.

* Intermediate values and gradients are calculated.

* Reminder: Chain rule
Y= 500
Z = ZC‘/) = 305‘(79

oz _ pZ Y
Tha, X prod (3557

Objective of Backprop:

0T oJ

—— Y mmm——

DWW T IR
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Back propagation

» Calculate the gradient with respect to all parameters.

* Intermediate values and gradients are calculated.

* Reminder: Chain rule
Y= 500
Z = 3(‘/) = 305‘(7()

oz _ pZ Y
Tha, X prod (3557

Objective of Backprop:

0T oJ

—— Y mmm——

DWW T IR

Introduction to Deep Learning
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Back propagation

» Calculate the gradient with respect to all parameters. 8

* Intermediate values and gradients are calculated.

* Reminder: Chain rule
= §00)
Z = 3,(\/) = 305'(7()
Theu, 9z . r’w"f( bz Y

oY Tox |
R -
v
Objective of Backprop: i ¥
0T o7
)
w) NU') J.7 |
9 W Clwh,ew‘t Jl OLfec/w:e A :Fmd (_é_:_[ , §_lt ):iL é_)RCI, >
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Back propagation

» Calculate the gradient with respect to all parameters. 8

* Intermediate values and gradients are calculated.

* Reminder: Chain rule
Y= 500
Z = 3,(\/) = 305'(7()
Thew, 9Z - r’w"f( bz | oY

X Yo%
codionk  tort 0] - dT oYy
Objective of Backprop: G] o _,_3_—_&) - F%d ( . —QI/ 3 i
‘/\)Cl) Bl/\)c (Dj C)[,\B N
o] M)
TN e 0 Ay Y
Bwu) PR CIW_): OJ[ OLfeC/J"VQ'

é:]- :md(ﬂ,?ﬁ):%@)gq’
j—t,mc,%rorr\ wrt 9”/}7[—7—— ‘aj\ 7) oL 33\
e Va}u:aw

ot
! Y
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s (2 Tt (22,28)- 09T
R _— FT 3&\ 5—|n &/\
o h J
: £ 0 ( 9T Oy
Objective of Backprop: C]W o "lm Fma ~ \ i ¢2)
R D1 I AW
0J 0T
_ ) N we Cp
BNUD 91«) D C]W‘t OJ[ OLfeC/J"VQ é:]_

)

Back propagation

» Calculate the gradient with respect to all parameters.

* Intermediate values and gradients are calculated.

 Reminder: Chain rule

Y ZZH’()
Z = (arc\/) = 30;}(79

j—t,mc}xrorr\ nrt M—EA—}
Loger vanbblet Y
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Back propagation

» Calculate the gradient with respect to all parameters.

* Intermediate values and gradients are calculated.

 Reminder: Chain rule

Y= $00 oJ - proc (@l,?ﬁ) :EGD?/C%)

Z= g = s 92 dh = 92/  oh
2y \ T
TL\M/ %Zx‘:rwa'(%z\-/’_jf( é_:]; ,-—,r‘roo‘ i‘?\:,%ﬂ): 1/\5()_22_-_
>h o§  on 34
aod et Lo T 53— ~  Dpacd ( QF c}él\
Objective of Backprop: 0] — )3 S
) oW o EIN
0J 5T
¢ ’ -;U_) - le IV‘
oW 0 CIW-I: oJl oLfc}v eu} 9T ,md(_@_:f_ %):%@)Rﬂz
JL'M“”‘  \py ‘—’“/}7’%' 99 F oL’ 2 93
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e
Back propagation 1
AW ]S
» Calculate the gradient with respect to all parameters. _Q_Z_ = Q”W“‘ ( ?41 ? E/%U) - —6—3; X-T G =
. . EYR L 0 oW de
* Intermediate values and gradients are calculated.
N
* Reminder: Chain rule 1
¥ =5 o] pred ( 2N 9%) fﬁ@?y@ -
Z = 3,(\/) = 305—(%) o2 oh L= o h
oY N\ 2T
T 2551 (5 3T pd (82,8 ) wo T :
>h oF on N =
A
codionk  tort 3] _ 4( 9T o \
Objective of Backprop: C] o )3&4» . —QI/ 3 i >
) oW 9& EIN =
0T 0T
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Deep NN Training Algorithm

On-Line algorithm:
1. Initialize weights
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Deep NN Training Algorithm

On-Line algorithm:
1. Initialize weights
2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute
all the variables on its path.
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Deep NN Training Algorithm

On-Line algorithm:
1. Initialize weights
2. Present the data input and targets for the deep NN

Forward propagation: Traverse the computational graph in the direction of dependencies and compute
all the variables on its path.

3. Compute Deep NN output

4. Back propagation of errors

-L 0
vobare, AWif = =& l ,
0 b\)rJJ
5.Update all the weights using Gradient descent:
4 , POLYTECH’ @ gﬁ"ﬂ’nﬁﬂﬁz f ’\ Introduction to Deep Learning
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Deep NN Training Algorithm

On-Line algorithm:

1. Initialize weights

2. Present the data input and targets for the deep NN

Forward propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its

path.
3. Compute Deep NN output (L
4. Back propagation of errors ~ i ) 2w v Ct) —+ AWEJ'
5. Update all the weights using Gradient descent: m/ AMEJ' = - 3T
0 wsz

6. Repeat the steps from 2 , until acceptable error levels observed .

Remarks:

« intermediate values must be stored until backpropagation

» backpropagation requires significantly more memory than plain inference.

» Gradients as tensors variables must be stored to invoke the chain rule.

* Minibatches = GD on several data inputs together = more intermediate activations need to be stored.
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Deep NN Training Algorithm

On-Line algorithm:
1. Initialize weights. How? what is the best way?
2. Present the data input and targets for the deep NN

Fomard propagation: Traverse the compute graph in the direction of dependencies and compute all the variables on its
path.

3. Compute Deep NN output

4. Back propagation of errors o (| (£+) = W it CE) -+ AIMJ'
5.Update all the weights using Gradient descent: ohere, Awij - - 0d
0 t‘/\)t,'J'

6. Repeat the steps from 2 , until acceptable error levels observed.

How to access? What is the best model? When is training over?

Remarks:

* intermediate values must be stored until backpropagation

» backpropagation requires significantly more memory than plain inference.

» Gradients as tensors variables must be stored to invoke the chain rule.

* Minibatches = GD on several data inputs together = more intermediate activations need to be stored.
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Summary

Forward propagation sequentially calculates and stores intermediate variables within the compute
graph defined by the neural network. It proceeds from input to output layer.

Back propagation sequentially calculates and stores the gradients of intermediate variables and

parameters within the neural network in the reversed order.

When training deep learning models, forward propagation and back propagation are interdependent.

Training requires significantly more memory and storage.
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Generalization and Training
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Generalization

» Goal is to discover general pattern (underlying data distribution),
achieve good generalization to New cases.

* but, generalized performance over unseen, new data (assumed same distribution

depends upon:
* rich, diversity and quantity of input data for training
« complexity of model trained.
» underfitting and overfitting of model

Example: Consider training data input represent only 10% of general distribution.

 trained model likely to perform well over training data,
» likely to perform poorly over test data .
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Generalization

» Training Error: Error exhibited by model during training

» Generalization Error: Error expected when model applied over-imaginary (unseen) data sampled

from underlying data distribution.

» Generalization error — Test error when that data is Test data

Remark: Assume that training set and test set drawn independently and identically from same

underlying distribution ( possibly hidden).

When such is NOT the case: .
Training

Test

POLYTECH® UNIVERSITE (
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cat

cat

\
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Generalization: Underfitting and Overfitting

« Under fitting: model is unable to reduce training errors.

« Overfitting: model test error is significantly higher than

A\ 4

training error. X

A\4
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Generalization: Underfitting and Overfitting

« Under fitting: model is unable to reduce training errors.

« Overfitting: model test error is significantly higher than

training error.

How does it depend on Model complexity?
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Underfitting and Overfitting

« Under fitting: model is unable to reduce training errors.

« Overfitting: model test error is significantly higher than

training error.

How does it depend on Model complexity?

What is model complexity?

» depends on context,

* number of hyper-parameters (tunable parameters),

« number of layers, hidden nodes in each layer,

* number of weights, range of values taken by weights,
 activation functions, choice of activation functions....
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Underfitting and Overfitting

« Under fitting: model is unable to reduce training errors.

« Overfitting: model test error is significantly higher than

training error.

How does it depend on Model complexity?

Over/under fitting depends on:

* Model complexity:
* Model too simple—> underfitting (large rich dataset, not enough weights)

* Model too complex—> overfitting (large amount of weights, range of weights and training data small/ less
rich.

» quality and quantity of training data set:
 large and rich training data set-> higher probability of estimating underlying distribution.
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Underfitting and Overfitting

» Under fitting: model is unable to reduce training errors.

« Overfitting: model test error is significantly higher than
training error.

How does it depend on Model complexity?

Over/under fitting depends on:

* Model complexity:
* Model too simple—> underfitting (large rich dataset, not enough weights)
* Model too complex—> overfitting (large amount of weights, range of weights and training data small/ less rich.

» quality and quantity of training data set:
» large and rich training data set-> higher probability of estimating underlying distribution.

Best practice:
» consider large and diverse training data set + sufficiently complex deep NN model
» observe the training loss and test loss

» fine tune the model (tune hyper parameters, add/remove weights) to achieve minimal under/overfitting.
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Underfitting and Overfitting Loss

» Under fitting: model is unable to reduce training errors.
» Overfitting: model test error is significantly higher than
training error.

How does it depend on Model complexity?

Over/under fitting depends on:

* Model complexity:
» Model too simple—> underfitting (large rich dataset, not enough weights)
* Model too complex—> overfitting (large amount of weights, range of weights and training data small/ less rich.

» quality and quantity of training data set:
» large and rich training data set-> higher probability of estimating underlying distribution.

Best practice:

» consider large and diverse training data set + sufficiently complex deep NN model

» observe the training loss and test loss

» fine tune the model (tune hyper parameters, add/remove weights) to achieve minimal under/overfitting.

Rule of thumb:
The simplest model which explains the majority of the data is usually the best
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Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases
How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the
model.

» Monitor error on the test set as network trains.
» Stop network training just prior to over-fit error occurring - early stopping or tuning

2. Number of effective weights is reduced : Number of weights and value range.

4 POLYTECHS UNIVERSITE f Introduction to Deep Learnin
.D e o @ DE LORRAINE QA’\ ucti p ing s

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases
How to ensure that a network has been well trained??

1. Rich and large data sets: Different data sets for training, parameter tuning and testing of the model.

When amount of data is large

Training Set
70%

Available Examplés

<

Validation Set
15%

70% Divide randomly \ 30%

Training
Set

s , ,
aJ rosrreer @ Can
LJ

=

Test
Set

Test error

Generalization error
= test error

Introduction to Deep Learning
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Generalization : Preventing over-fitting (over-training)

Goal: To achieve good generalization accuracy on new examples/cases
How to ensure that a network has been well trained??

1.Rich and large data sets: Different data sets for training, parameter tuning and testing of the
model.

When amount of data is small: Cross-Validation (K-fold)

« original training data set is split into K noncoincident sub-data sets

» use the K -1 sub-data set to train the model. _

 validate the model using a sub-data set Available Exagmples

 Repeat model training and validation — — ldivision

process k times. / k-1 divisions

Trainin Validation
& >
Set Set
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

« Manually or automatically select optimum number of hidden nodes and connections.
» Not scalable, often needs expert opinion.

* Regularization methods
» Adjust the bp error function to penalize the growth of unnecessary weights
» Keep the weight vector small magnitude =»add its value as a penalty to the problem of minimizing the loss.
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

« Manually or automatically select optimum number of hidden nodes and connections.
» Not scalable, often needs expert opinion.

* Regularization methods
» Adjust the bp error function to penalize the growth of unnecessary weights
» Keep the weight vector small magnitude =»add its value as a penalty to the problem of minimizing the loss.
* Weight vector becomes too large, = the learning algorithm prioritizes minimizing w over minimizing
the training error.

Llwb) + X o]l
2
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

« Manually or automatically select optimum number of hidden nodes and connections.
» Not scalable, often needs expert opinion.

* Regularization methods
» Adjust the bp error function to penalize the growth of unnecessary weights
» Keep the weight vector small magnitude =»add its value as a penalty to the problem of minimizing the loss.
* Weight vector becomes too large, = the learning algorithm prioritizes minimizing w over minimizing
the training error.

Llwb) + X o]l

2 Weights decay by an amount
» Squared Norm Regularization: 0 j‘% = proportional to its magnitude
[l = L5
=1

» Gradient Descent update becomes :
ﬂ, weight-cost parameter

D e— w(‘”ﬂ)w—p{ﬂ

another Hyperparameter
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Generalization : Preventing over-fitting (over-training)

2. How to control number of effective weights?

« Manually or automatically select optimum number of hidden nodes and connections.
» Not scalable, often needs expert opinion.

* Regularization methods
« Dropout

Srivastava et al. 2014.

Shown : Dropout = Regularized NN.

(a) Standard Neural Ne (b) After applying dropout.
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Training

1. Network Design (Architecture of NN networks.) #layers, #hidden nodes, activation functions,
model ..

2. Initialize model parameters.

3. Choose Loss function

4. Training and Backpropagation : Mini batch, batch, or stochastic GD.
5. Monitor the loss function and error .

When no overfitting observed (epochs of training)

Stop if the error fails to improve (has reached a minimum)
Stop if the rate of improvement drops below a certain level
Stop if the error reaches an acceptable level

Stop when a certain number of epochs have passed

When overfitting observed: fine tune the NN network
(initialize parameters, prune or regularize the weights, ...)

/4 POLYTECH" UNIVERSITE f Introduction to Deep Learnin
. , L @ DE LORRAINE  { QA’\ ucti p Ing 124

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Training

1. Network Design (Architecture of NN networks.) #layers, #hidden nodes, activation functions,
model ..

2. Initialize model parameters. How?

3. Choose Loss function

4. Training and Backpropagation : Mini batch, batch, or stochastic GD.
5. Monitor the loss function and error .

When no overfitting observed (epochs of training)

 Stop if the error fails to improve (has reached a minimum)

 Stop if the rate of improvement drops below a certain level

» Stop if the error reaches an acceptable level

» Stop when a certain number of epochs have passed

When overfitting observed: fine tune the NN network

(initialize parameters, prune or regularize the weights, ...)
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How to 1nitialize the parameters

» Backprop involves successive multiplication of weight gradients of each layer=» multiplication of
gradient matrices.

« They might be small, they might be large, their product (millions of layers) = very large or very
small.

« Optimization is bound to fail: either very very large or excessively small!
Exploding Gradient problem: when gradients matrix product becomes excessively large.

Vanishing gradient problem: when chain product becomes infinitesimally small. ¢(x) .

Intuition: 10

- Sigmoid
gradient

o

8 4

* As we can see, the gradient of the sigmoid vanishes for very large or
very small arguments. 06 1

« the gradients of the overall product may vanish!! o

02

0.0

-8 =g -4 -2 0 2 4 6 8
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How to 1nitialize the parameters

AAEpS H*
Rule of thumb =>»Initialization : H \'[77 Q >

Random initialization from Gaussian distribution

+H H‘b
- d"H‘{ ot HY Oy
\ 2 oW, 0 = "
zero mean and standard deviation =-—
VN
'Yl{,-n .
n= number of input layers. ) & § Wt’i L
H 72
"
Intuition: consider simplistic Neural network v |\ oo L
He <
Remark: Therefore, best practice is to choose
number of layers = power of 2 or, 2"
works for several hundreds of layers!!
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How to initialize the parameters Ny 2

2
- py 2 = ALNESE
Xavier Initialization(Xavier et Benjio 2010): £ [’/U/ :l - j & E \

9.
Thus, this factor should be controlled: \in 077 2 z Wy 2 |
us 1S TACtOr snou e controue lLv i Z_ \‘D[/\/sbd] \ELXJLZ:l
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How to initialize the parameters Ny

Xavier Initialization(Xavier et Benjio 2010):

yh
Thus, this factor should be controlled: (Yll:n, 072 i = Mn ¢ |Bf o:®
’ pill S BREIRL Bt
i
But consider backprop too: 2 _
[Vl LVL ' ‘U' Y
Can not be done simultaneously
SO,
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How to initialize the parameters N

2
- py 2 = ALNESE
Xavier Initialization(Xavier et Benjio 2010): £ [/h[/ :l - j c E \

L
Thus, this factor should be controlled: (Yll:n, 072 j_ = Tn % E
! Pl \\DL\,&,J] B x|
F
But consider backprop too: 2 _
{Vl LVL ' ‘D‘ Y
Can not be done simultaneously I (%\ﬂ = %M’) sz = A @mm  Drawn from Gaussian
SO,

If drawn from uniform distribution: F@"r Youdowr vasodleg U {}q/ a:]

Vas = a%/3
Thus, (ancFaloeahon

Initialization of weights of a layer : U ["W / %,n ﬂ )
tn T Mowk) im 1 lont
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How to 1nitialize the parameters (scratching the surface) N

2
- py 2 = ALNESE
Xavier Initialization(Xavier et Benjio 2010): £ [/h[/ :l - j c E \

L
Thus, this factor should be controlled: (Yll:n, 072 j_ = Tn % E
! Pl \\DL\,&,J] B x|
F
But consider backprop too: 2 _
{Vl LVL ' ‘D‘ Y
Can not be done simultaneously I (%\m = %M’) sz = A @mm  Drawn from Gaussian
SO,

If drawn from uniform distribution: F@"r Youdowr vasodleg U E—q/ a:]

Vas = a%/3
Thus, (ancFaloeahon

Initialization of weights of a layer : U ["W / %,n ﬂ )
tn T Mowk) im 1 lont

POLYTECH @ UNIVERSITE AN Introduction to Deep Learning
\“

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr

131



Types of Activation functions

JHA Mayank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



.
It

)

Activation functions

1.0~

0.8

0.6 A

0.4

0.2 1

0.0 1

-8 -6 -4 =2 0 2 4 6 8

Threshold function (binary step function)

1.0 1

sigmaid(x}
L] = o
B m

=
%]
1

-
=
1

Sigmoid function

POLYTECH® UNIVERSITE (
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relu(x)
S

RelLu (Rectified Linear Unit)

1.0 1

0.5 1

0.0 1

tanh(x)

—0.5 +

_1.D .

TanH / Hyperbolic Tangent

Introduction to Deep Learning
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Activation Functions

1.0 A

0.8 1 of L if
0.6 - ¢(x)_ 0 lf x<0

0.4 1

0.2 -

0.0 +

Threshold function (binary step function)

 If the input value is above or below a certain threshold,
the neuron is activated and sends the same signal to the next layer.
» Good for Binary outputs - 2 class classifications.

* Does NOT allow multi value outputs - does not support classification of input into multiple
categories.
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sigrmoid(x)

D- Not Zero centered !!

Activation Functions : Non-linear functions (why linear functions not preferred?

1.0 1
u:s- ¢(X)_ l+e

0.4 1

0.2 1

0.0 1

Sigmoid function
» Smooth gradient, preventing “jumps” in output values.
« Qutput values bound between 0 and 1, normalizing the output of each neuron.

» Clear predictions—For X above 2 or below -2, tends to bring the Y value (the prediction) to the edge of the
curve, very close to 1 or 0. This enables clear predictions.

» The Sigmoid function used for binary classification in logistic regression model.
« While creating artificial neurons sigmoid function used as the activation function.
Disadvantages

 Vanishing gradient—for very high or very low values of X, there is almost no change to the prediction, causing a
vanishing gradient problem.

« This can result in the network refusing to learn further, or being too slow to reach an accurate prediction.
« Computationally expensive
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Activation Functions

1.0 1_8—2)6
0.5 - ¢(X): —2x
@ l+e
>
£ 0.0-
H
_D.S_
_1.D_

TanH / Hyperbolic Tangent

Zero centred =»making it easier to model inputs that have strongly negative, neutral, and strongly
positive values.

All advantages of Sigmoid function preserved.

Computationally expensive.
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Activation Functions

¢ (x) = max(x,0)

ReLu (Rectified Linear Unit)
- Computationally efficient—allows the network to converge very quickly

* Non-linear—although it looks like a linear function, ReLU has a derivative function and allows for
backpropagation.

» Avoids vanishing or exploding gradient problems unless...

Disadvantages:
The Dying ReLU problem—when inputs approach zero, or negative,
the gradient of the function becomes zero, the network cannot perform backpropagation and cannot learn.
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Activation Functions

¢ (x) = max(x,0)

Leaky RelLu
« Computationally efficient—allows the network to converge very quickly (faster than Sigmoid/tanh)

 Does not Saturate/

 Does not “die”

[Mass et al., 2013] [He et al., 2015]
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probabilities

Activation function

d(x )= fip(xi) fori=12,3..k
( ) Zj—oexp(xj)

Calculates the probabilities distribution of the event over ‘n’ different events.

Softmax function

In general, calculates the probabilities of each target class over all possible target classe

Later the calculated probabilities will be helpful for determining the target class for the given inputs.

The range will 0 to 1, and the sum of all the probabilities will be equal to one.

Remark: Useful for output neurons—typically Softmax is used only for the output layer,

for neural networks that need to classify inputs into multiple categories.

» Very often used for multi-class classification.

4 POLYTECHS UNIVERSITE f Introduction to Deep Learnin
. , B @ DE LORRAINE  { QA[\ ucti p Ing 139

JHA Mavank , Email: mayank-shekhar.jha [at] univ-lorraine.fr



Loss functions
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Common Loss functions
Regression

Mean Square Error (MSE) Loss: measured as the average of squared difference between predictions
and actual observations.

n i

Also known as: L2 loss, Quadratic loss, MSE loss, ..

Remarks:

» Predicted values that are far from actual values are penalized heavily.
» Squaring : positivity, quadratic function-> nice properties helpful in finding gradients.
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Common Loss functions

Classification (recall: binary classification and multi class classification

Softmax function )
. . L . probabilities
« Often, for classification: outputs are probabilities of belonging to each class. N
» Thus, loss must be calculated based on assessment of probabilities.
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Common Loss functions

Classification Loss (recall: binary classification and multi class classification
Softmax function )
Cross Entropy Loss (log loss, logistic loss, logarithmic loss, negative log loss..)

(Binary Class , or 2 classes)
Ly =—( ylog(p)+(1-y)log1-p) )

Cross-entropy loss, or log loss, measures the performance of a classification model
whose output is a probability value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual
label.

Notice that when actual label is 1 (y = 1), second half of function disappears whereas
in case actual label is 0 (y = 0) first half is dropped off.

A perfect model would have a log loss of 0.
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RELU RELU RELU RELU RELU RELU
Common LO S S functions CONV lCONV CONV | CONV CONV | CONV
. ¢

car

Classification Loss (multi class classification, Softmax function)

fruck
airplane

Cross Entropy Loss &hip

(Multi Class )

horse

¢
-
=
=
=
=
=
L

ML ERTYE RN

Y M : Number of classes
_ Y. - true probability of belonging to that class
LCE - Z yi,c log(pi,c) p,.: predicted probability of belonging to that class.
c=1
» Cross-entropy can be calculated for multiple-class classification.

» The classes have been one hot encoded, meaning that there is a binary feature for each class value.
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Common Loss functions

Classification Loss (multi class classification, Softmax function)

Cross Entropy Loss
(Multi Class )

M
LCE = _Z yi,c log(pz,c)
c=1

» Cross-entropy can be calculated for multiple-class classification.

Label Encoding

One Hot Encoding

Food Name Categorical # | Calories
Apple 1 95
Chicken 2 231
Broccoli 3 50

Apple | Chicken | Broccoli | Calories
1 0 0 95

0 1 0 231

0 0 1 50

» The classes have been one hot encoded, meaning that there is a binary feature for each class value.

One hot Coding: Converting Labels (categorical, non numeric feautres) into = numeric features without
any cardinal (ordering) values.

)
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Common Loss functions

Classification Loss (multi class classification, Softmax function)

probabilities

Cross Entropy Loss

(Multi Class )
M : Number of classes

M
— Y. - true probability of belonging to that class
LCE - Z yi,c log(pi,c) p,.: predicted probability of belonging to that class.
c=1

Cross-entropy can be calculated for multiple-class classification. F

The classes have been one hot encoded, meaning that there is a binary feature for each class value.

The predictions must have predicted probabilities for each of the classes (Example: Softmax).

The cross-entropy is then summed across each binary feature and averaged across
all examples in the dataset.

exp(x;) .
o(x)=c— fori=1,2,3...k
) 2o xp(x)
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Common Loss functions

Classification Loss (multi class classification, Softmax function)

Cross Entropy Loss

(Multi Class )
M : Number of classes

M
— Y. - true probability of belonging to that class
LCE - Z yi,c log(pi,c) p,.: predicted probability of belonging to that class.
c=1

Cross-entropy can be calculated for multiple-class classification.

. !
e

The classes have been one hot encoded, meaning that there is a binary feature for each class value.

The predictions must have predicted probabilities for each of the classes (Example: Softmax).

The cross-entropy is then summed across each binary feature and averaged across
all examples in the dataset.

exp(x;
. , , ' _ , , ¢(xl.): ‘_kp( ) fori=123..k
Suggestion: Read this thread of discussion on forum on using Cross entropy in practice. Z" exp(x;)
j=0 J
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https://datascience.stackexchange.com/questions/9302/the-cross-entropy-error-function-in-neural-networks

Loss functions: Best practices

Regression Problem

» A problem where you predict a real-value quantity.

« Output Layer Configuration: One node with a linear activation unit.

» Loss Function: Mean Squared Error (MSE).

Binary Classification Problem

» A problem where you classify an example as belonging to one of two classes.

» The problem is framed as predicting the likelihood of an example belonging to class one, e.g. the
class that you assign the integer value 1, whereas the other class is assigned the value 0.

« Output Layer Configuration: One node with a sigmoid activation unit.

» Loss Function: Cross-Entropy

Multi-Class Classification Problem

« A problem where you classify an example as belonging to one of more than two classes.

» The problem is framed as predicting the likelihood of an example belonging to each class.

« Output Layer Configuration: One node for each class using the softmax activation function.
» Loss Function: Cross-Entropy.
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Summary

Simple NN functioning, analogy with linear regressions

Feed foreword Deep NN functioning

Weight updates through backprop and gradient descent (batch, mini batch and stochastic GD)

Generalization :Training /validation/test set

Generalization and Training issues: overfitting, underfitting, finding the right tradeoff.

Weights initializations: Exploding and Vanishing gradients, Xavier initilisations.

Note on Activation functions.
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