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Maitre de Conférences (Associate Professor),
CRAN,

UMR 7039, CNRS,
Polytech Nancy,
Office: C 225,
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Reinforcement Learning:  Towards human level : 

   control ((Finding the optimal way of doing a given task)

   prediction 

   Adaptation (Robots That Can Adapt like Animals, Nature)

   

 

AI enhances Tribology , KTH, Sweden
 Email:  mayank-shekhar.jha [at] univ-lorraine.fr
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Motivation

Built 
new 
moves
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Some Applications

3Introduction to Deep Learning 
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Source : Deep Mind
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Agent/controller

Agent
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Environment/system 

Agent/controller

Agent and Environment 
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Environment/system 

Agent/controller

Agent and Environment 
and
Interaction 
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MDP Definition

Consider the MDP(X ,U,P,R) where:

• X is a set of states and U is a set of actions or controls.

• The transition probabilities P : X × U × X → [0, 1] describe,
for each state x ∈ X and action u ∈ U, the conditional
probability Pu

x ,x ′ = Pr {x ′ | x , u} of transitioning to state
x ′ ∈ X given the MDP is in state x and takes action u.

• The cost function R : X × U × X → R is the expected
immediate cost Ru

xx , paid after transition to state x ′ ∈ X given
that the MDP starts in state x ∈ X and takes action u ∈ U.

Note: The Markov property refers to the fact that transition
probabilities Pu

x ,x ′ depend only on the current state x and not on
the history of how the MDP attained that state.
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MDP

Control law/ Policy

The basic problem for MDP is to find a mapping
π : X × U → [0, 1] that gives, for each state x and action u, the
conditional probability π(x , u) = Pr{u | x} of taking action u given
that the MDP is in state x .

• Such a mapping is referred to as a closed-loop control or
action strategy or policy. The strategy or policy
π(x , u) = Pr{u | x} is called stochastic or mixed if there is a
nonzero probability of selecting more than one control when in
state x .
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MDP

Control law/ Policy

The basic problem for MDP is to find a mapping
π : X × U → [0, 1] that gives, for each state x and action u, the
conditional probability π(x , u) = Pr{u | x} of taking action u given
that the MDP is in state x .

• If the mapping π : X × U → [0, 1] admits only one control,
with probability one, when in every state x , the mapping is
called a deterministic policy. Then, π(x , u) = Pr{u | x}
corresponds to a function mapping states into controls
µ(x) : X → U.
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Optimal Sequential Decision Problems

Stage Cost

Define a stage cost at time k by rk = rk (xk , uk , xk+1).
Then Ru

xx ′ = E {rk | xk = x , uk = u, xk+1 = x ′}, with E{·} as the
expected value operator.
Define a performance index as the sum of future costs over the
time interval [k, k + T ],

Jk,T =
T∑
i=0

γ i rk+i =
k+T∑
i=k

γ i−k ri ,

where 0 ≤ γ < 1 is a discount factor that reduces the weight of
costs incurred further in the future.
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Control policy

• Control policy → πk (xk , uk) that is used at each stage k of
the MDP.

• Stationary policies, where the conditional probabilities
πk (xk , uk) are independent of k .

• Then πk(x , u) = π(x , u) = Pr{u | x}, for all k.

Note:

Nonstationary deterministic policies have the form
π = {µ0, µ1, · · · }, where each entry is a function
µk(x) : X → U; k = 0, 1, . . . .
Stationary deterministic policies are independent of time, that is,
have the form π = {µ, µ, · · · }.

Select a fixed stationary policy π(x , u) = Pr{u | x}.
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Control policy

• Select a fixed stationary policy π(x , u) = Pr{u | x}.
• Then the ”closed-loop” MDP reduces to a Markov chain with
state space X .

• That is, the transition probabilities between states are fixed
with no further freedom of choice of actions. The transition
probabilities of this Markov chain are given by

px ,x ′ ≡ Pπ
x ,x ′ =

∑
u

Pr
{
x ′ | x , u

}
Pr{u | x} =

∑
u

π(x , u)Pu
x ,x ′

where the Chapman-Kolmogorov identity is used.
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Some properties

• A Markov chain is ergodic if all states are positive recurrent
and aperiodic.

• Under the assumption that the Markov chain corresponding to
each policy, with transition probabilities being ergodic, it can
be shown that every MDP has a stationary deterministic
optimal policy.

• Then, for a given policy, there exists a stationary distribution
pπ(x) over X that gives the steady-state probability the
Markov chain is in state x .
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Value of a Policy

Value

The value of a policy is defined as the conditional expected value
of future cost when starting in state x at time k and following
policy π(x , u) thereafter,

V π
k (x) = Eπ {Jk,T | xk = x} = Eπ

{
k+T∑
i=k

γ i−k ri | xk = x

}
,

where Eπ{} is the expected value given that the agent follows
policy π(x , u), and V π(x) is known as the value function for policy
π(x , u), which is the value of being in state x given that the policy
is π(x , u).
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Objective

The main objective of MDP is to determine a policy π(x , u) to
minimize the expected future cost

Optimal policy

π∗(x , u) = argmin
π

V π
k (s)

= argmin
π

Eπ

{
k+T∑
i=k

γ i−k ri | xk = x

}
.

This policy is termed the optimal policy.
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Objective

The corresponding optimal value is given as

[

Optimal cost]

V ∗
k (x) = min

π
V π
k (x) = min

π
Eπ

{
k+T∑
i=k

γ i−k ri | xk = x

}
.
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Recursive relationship for Value function

The value of the policy π(x , u) can be written as

V π
k (x) =Eπ {Jk | xk = x} = Eπ

{
k+T∑
i=k

γ i−k ri | xk = x

}
,

V π
k (x) =Eπ

{
rk + γ

k+T∑
i=k+1

γ i−(k+1)ri | xk = x

}
,

V π
k (x) =

∑
u

π(x , u)
∑
x ′

Pu
xx ′ [R

u
xx ′

+γEπ

{
k+T∑
i=k+1

γ i−(k+1)ri | xk+1 = x ′

}]
.
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Recursive relationship for Value function

Recursive Relationship

Therefore the value function for the policy π(x , u) satisfies

V π
k (x) =

∑
u

π(x , u)
∑
x ′

Pu
xx ′

[
Ru
xx ′ + γV π

k+1

(
x ′
)]

This equation provides a backward recursion for the value at time
k in terms of the value at time k + 1.
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Attention!

Attention!

In computational intelligence and economics, the interest is in
utilities and rewards, and the interest is in maximizing the
expected performance index.
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