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Abstract
Safety and stability considerations play a crucial role in the development of
learning based strategies for control design of systems that require high lev-
els of safety. Safe reinforcement learning (RL) based approaches traditionally
seek learning of the control laws that are optimal with respect to system perfor-
mance whilst ensuring system stability and safety. In this article, an off-policy
safe RL based approach is proposed for nonlinear systems affine in control in
continuous time. In this novel work, safety and stability are guaranteed dur-
ing initialization and exploration phases by adjusting the control input with the
solution of a quadratic programming problem combining both input to state
stable-control Lyapunov function and robust control barrier function (R-CBF)
conditions. Moreover, the safety of the learned policy is assured by augment-
ing the cost function with a CBF to maintain safety and optimize performance
simultaneously. Novel mathematically rigorous proofs are provided to estab-
lish the stability and safety guarantees, offering a sound theoretical foundation
for the approach. To demonstrate the effectiveness of the algorithm, two exam-
ples are presented: engine surge and stall dynamics, and an unstable nonlinear
system.
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1 INTRODUCTION

In recent years, safety-critical systems1 have become increasingly prevalent in various domains, such as transporta-
tion, air-traffic control, nuclear plants, and automated industrial processes to name a few. Consequently, it has become
extremely essential to ensure safety in the design of control systems to mitigate potential risks.2

However, ensuring safety is not the only requirement for control system design. One of the crucial aspects is the consid-
eration of input and state constraints, which restrict the behavior of the system to safe and acceptable bounds, preventing
it from exceeding its limits and causing damage.2 There has been a growing interest in the development of optimal con-
trollers that achieve predefined performance while satisfying safety constraints. This task poses significant challenges,
particularly since system dynamics exhibit uncertainty and are subject to changes over time.3,4 Therefore, a recent focus

Abbreviations: HJB, Hamilton–Jacobi–Bellman; HJI, Hamilton–Jacobi–Isaacs; ISS-CLF, input to state stable-control Lyapunov function; MPC,
model predictive control; PI, policy iteration; QP, quadratic programming; R-CBF, robust control barrier function; RL, reinforcement learning;
VI, value iteration.
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has been on developing learning-based controllers that can balance the trade-offs between safety and performance whilst
considering uncertainties of system dynamics.5

Reinforcement learning6 (RL) has emerged as a powerful machine learning tool for designing optimal controllers for
uncertain systems by iteratively interacting with the environment.7 Its ability to operate in real-time and adapt to dynamic
system changes makes it a promising approach for controlling uncertain systems and for learning robust and optimal
control policies.8,9 RL algorithms typically operate in two phases: exploration and exploitation.10 During the exploration
phase, random noisy inputs are applied to the system to collect rich data. This data is then used in the exploitation phase to
optimize the control policy. However, under uncertainty, absence of complete dynamics knowledge can put the RL agent
at risk of stability or safety violation, including input and state constraints, which can further complicate the learning of
safe and optimal control policies. Moreover, the use of exploration noise can lead to visiting unsafe regions which can
lead to catastrophic outcomes, such as damage to the agent or failure to accomplish the task. Balancing the trade-offs
between exploration and exploitation while ensuring safety and stability is a challenging problem that must be carefully
addressed, especially in practical applications.

Different approaches have been proposed in the literature to solve the safe RL problem.11,12 One family of strategies
is based on modifying the optimality criterion such as worst case criterion,13 risk-sensitive criterion,14 and constrained
criterion.15 Another approach involves modifying the exploration process itself, which can be done by incorporating exter-
nal knowledge into the exploration process, such as using teacher advice,16 expert demonstrations,17 or prior knowledge
about the environment.18 Additionally, incorporating a risk metric to guide the exploration process19 can also be an effec-
tive approach to ensuring safety. Moreover, reachability analysis methods have been employed to address safety in the
exploration process. Reference 20 proposes a method for computing the backward reachable set starting from the obsta-
cles, where a state is safe for all actions when outside of the backward reachable set. This later is obtained by finding the
solution of a time-dependent HJI (Hamilton–Jacobi–Isaacs) equation. This method has the disadvantage that a different
backward reachable set has to be computed for each obstacle which is computationally expensive.

Control barrier functions (CBF) based approaches are another prominent method of action projection techniques that
have been widely used for safety verification and control synthesis of nonlinear systems.21 CBFs provide a framework for
designing control policies that guarantee forward invariance of the safe set such that the system remains in a safe set and
never crosses the boundary.22 CBFs have been incorporated within the model predictive control (MPC) framework for
handling state and input constraints. In References 23 and 24, the problem is formulated as an unconstrained optimization
problem where a re-centered barrier function is directly added to the MPC cost function with the origin within the safe
set. Reference 25 proposes a CBF candidate based approach to deal with scenarios where safety and optimality may
remain in conflict, and the safe set does not include the origin. Furthermore, recent works have shown that control barrier
functions can be used in RL frameworks for safe and efficient exploration of complex environments. By incorporating CBF
into the reward function,26 RL agents can learn policies that guarantee safety while achieving high performance on the
given task.

On the other hand, quadratic programming (QP) based approaches can be employed to ensure the safety during
the exploration phase by making minimal adjustments to the unsafe policy while satisfying CBF conditions.27 However,
herein, the availability of the system knowledge is essential making it challenging to integrate with RL frameworks that
do not rely on explicit system model.

For nonlinear systems, Reference 28 develops a safe exploration scheme for jointly learning the dynamics of an uncer-
tain control system and the optimal value function/policy. The proposed approach uses Lyapunov-like barrier functions29

to build robust safeguarding controller that can guarantee safety when combined with an arbitrary learning-based con-
trol policy. The safeguarding controller is leveraged to develop a safe exploration scheme in which the value function is
learned online via simulation of experience, addressing the trade-off between exploration and safety. In Reference 26,
off-policy RL algorithm is employed to learn an optimal safe policy that minimizes a cost augmented by a CBF, while a
safe and potentially conservative policy is applied for data collection during the learning process.

However, these aforementioned approaches require data collection both from the safe region as well as the vicinity
of the safety boundary where the CBF is active. This however, renders the system unsafe during initialization as well
as exploration phase. Additionally, the system should remain input-to-state stable (ISS) even in the presence of noise
during the exploration, which can be difficult to achieve in practice. As such, the existing approaches fail to propose safe
and admissible initialization and ensure safety during exploration and exploitation in a uniform manner. Notably, some
methods such as value iteration (VI) and 𝜆-policy iteration (𝜆-PI)30 do not necessitate the initialization with an admissible
policy. However, in this work, the specific focus is on the policy iteration (PI) algorithm where the initialization is a crucial
step.
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To address the existing scientific gap, this article proposes a novel safe off-policy approach for nonlinear systems that
guarantees safety at the three levels: initialization, exploration and exploitation. To that end, the proposed algorithm
learns a control law that combines an ISS-control Lyapunov function (ISS-CLF) and a robust control barrier function
(R-CBF) to ensure the safety and stability of the system during the initialization and exploration phases. The ISS-CLF is
used to ensure the admissibility of the policy and the system’s stability, while the R-CBF is used to ensure that the system
remains safe during exploration, even in the presence of probing noise. To further guarantee the learned policy’s safety,
the reward function is augmented with a barrier function that penalizes the policy for taking actions that violate safety
constraints.

The main contributions of this article lies on:

• Safe and admissible initial policy: In RL, a critical condition for PI algorithms is the initialization with an admissible
policy. In this approach, policies are initially generated randomly and subsequently subjected to modifications through
a safety and stability filter.

• Safe exploration and exploitation: This approach ensures the collection of rich data from both the safe region and
the vicinity of the safety boundary during the exploration phase. It’s achieved by adjusting the unsafe policy with
the solution of a QP problem. Notably, the system’s stability remains guaranteed throughout the exploration phase,
even after the addition of probing noise. During exploitation, the reward function is augmented by adding the barrier
function, assuring the safety of the learned policy.

• Providing novel rigorous mathematical proofs to establish stability and safety guarantees of the developed
algorithm.

The effectiveness of the proposed scheme is demonstrated through simulation on nonlinear systems.
The article is organized as follows. Problem statement, background information and preliminaries are given in Section

2. Section 3 presents the proposed approach with safety and stability proofs. Section 4 examines the feasibility of the
proposed approach using two examples. Finally, the conclusion summarizes the significant advances and presents the
future perspectives.

Notations. The interior of set𝒞 is denoted as int𝒞 and 𝜕𝒞 stands for its boundary. C1 denotes the set of continuously
differentiable functions. For a differentiable function V(x) and a vector f (x), the notation Lf V(x) corresponds to 𝜕V

𝜕x
f (x).

The symbol ⊗ denotes the Kronecker product. The Table 1 of notation contains all the other variables and their respective
definitions.

2 PROBLEM STATEMENT

This article focuses on the analysis and control of nonlinear systems described by the following differential equation,
which is affine in control input:

ẋ = f (x) + g(x)u, (1)

where x ∈𝒞 ⊆ Rn and u ∈𝒰 ⊆ Rm are respectively the state and control input of the system.𝒞 represents the set of safe
feasible states, thus the set inside which the system’s state must evolve to assure a safe operation. 𝒞 is mathematically
defined as:

𝒞 = {x| h(x) ≥ 0}, (2)

for a smooth function h: Rn → R. 𝒰 denotes the set of all admissible inputs that ensure stability of the system. f : Rn →
Rn and g: Rn → Rn×m are Lipschitz continuous and f (0) = 0.

The objective is control law design u(t) that optimizes performance function whilst assuring safety specifica-
tions. The safety objective is to guarantee that system states never leave the safe set 𝒞 as the system’s states evolve
according to (1).

Before starting with the solution formulation, a brief overview of some concepts in RL, CLF, and CBF is
provided.
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T A B L E 1 Table of notations.

Variables Definitions

x ∈ R
n System states

xu State of the system evolved by the input u

u ∈ R
m Control input

u0,random Random initial policy

u0 Safe and admissible initial policy

unoisy Exploration policy

us Safe exploration policy

𝒞 Safe set of system states

𝒰c Set of safe inputs

𝒰 Set of admissible inputs

𝒰a Set of admissible and safe inputs

Hsafe Safe Hamiltonian function

rsafe Safe reward function

W(x) Safe value function

e Probing noise

rsafe Safe reward function

Φ(x) Critic basis function

Ψ(x) Actor basis function

Ĉ Critic weights

Û Actor weights

B𝛾 Control barrier function

𝛼B Class 𝜅 function associated to the control barrier function condition

𝛼 Class 𝜅 function associated to the ISS-control Lyapunov function condition

2.1 Reinforcement learning

The objective of RL algorithms is to find a control policy u(t) that minimizes a cumulative reward function over an infinite
time horizon such as:

V(x0) =
∫

∞

0
r(x,u)dt, x(0) = x0, (3)

where r(x,u) = q(x) + uTRu, q(x) a positive definite function for all x ∈ Rn, and R is symmetric and positive definite.
Assume that the system (1) is stabilizable on some set 𝒞 , implying that there exists a control policy u(t) such that the
closed-loop system is asymptotically stable on 𝒞 . A control policy u(t) is considered admissible if it stabilizes the system
and leads to a finite cost V . The value function (3) can be expanded as follows:

V(x0) =
∫

T

0
r(x,u)dt +

∫

∞

T
r(x,u)dt. (4)

If V ∈ C1, then (4) becomes

lim
T→0

V(x0) − V(x(T))
T

= lim
T→0

1
T∫

T

0
r(x,u)dt, (5)
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which gives

V̇ = ∇V T(f (x) + g(x)u) = −q(x) − uTRu. (6)

Equation (6) is the infinitesimal form of (3), it is in fact the Lyapunov equation (LE) for nonlinear systems.

LE(V ,u)
Δ
= ∇V T(f (x) + g(x)u) + r(x,u) = 0, V(0) = 0. (7)

By substituting the optimal control (8) in (7),

u∗ = −1
2

R−1gT(x)∇V∗(x), (8)

where V∗(x0) is optimal cost with respect to the initial condition x(0) = x0, given by

V∗(x0) = min
u ∫

∞

0
r(x,u)dt ∀x ∈ 𝒞 . (9)

The LE is the well established Hamilton–Jacobi–Bellman (HJB) equation:

H(V∗)(x)
Δ
= ∇V∗T(x)f (x) + q(x) − 1

4
∇V∗T(x)g(x)R−1gT(x)∇V∗(x) = 0. (10)

The optimal control problem is solved by finding the solution of HJB equation (10) with respect to the value function
V∗. Then, by substituting the solution in (8) the optimal control is obtained. PI Algorithm 17 is a widely used RL method
that consists of two stages: policy evaluation (value update) and policy improvement.

Algorithm 1. Policy iteration algorithm

Initialization. Initialize u0 with an admissible policy.
Policy evaluation. Update the value using:

𝛻V T
i (x)[f (x) + g(x)ui] + r(x,ui) = 0. (11)

Policy improvement. The control policy is improved by:

ui+1(x) = −
1
2

R−1gT(x)𝛻Vi(x). (12)

PI algorithm can be applied using either on-policy or off-policy methods31 (Figure 1). On-policy based PI algorithms
improve the same policy used to make decisions. On the other hand, in off-policy based PI algorithms, a behavior pol-
icy is used to generate data, and it may be unrelated to the evaluated and improved policy known by the target policy.
Off-policy methods are more efficient as they re-utilize the stream of experiences obtained by executing a given behav-
ior policy to update several value functions associated with different learning policies.32 Additionally, PI algorithms
consider the effect of probing noise required for exploration. Adding such noise during exploration can be risky as it
can lead to

• unstable behavior;
• exploration actions that may lead to undesirable or unsafe states.

One approach to ensuring safety during exploration is through the use of CBFs.
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(A)

(B)

F I G U R E 1 Two different categories of PI. In on-policy, the policy applied to the system (behavior policy) to generate data is the same
policy being learned (learned policy). On the other hand, in off-policy RL, these two policies are separated and can be different. (A) Off-policy
PI block diagram. (B) On-policy PI block diagram.

2.2 Combining control barrier and control Lyapunov functions

A barrier function (BF) is a function that is positive within the safe set and increases to infinity as it approaches the
boundary of the set. It has a negative derivative in the vicinity of the boundary, which prevents it from reaching infinity.
Existence of a BF within a given set implies the forward invariance of the set under the system’s dynamics.33 If the ini-
tial state is in the given set, the state remains in the set as time evolves. The presented formulation of BFs allows for a
straightforward extension of these concepts to control systems by introducing the notion of CBFs defined in Reference 34
as follows.

Definition 1. A function B:𝒞 →R is a control barrier function for the set𝒞 if there exists class 𝜅 functions
𝛼1, 𝛼2, and 𝛼B such that

1
𝛼1(h(x))

≤ B(x) ≤ 1
𝛼2(h(x))

, (13)

inf
u∈𝒰

[Lf B(x) + LgB(x)u-𝛼B(h(x))] ≤ 0 ∀x ∈ int𝒞 . (14)

Condition (13) implies that the CBF behaves like the function 1
𝛼(h(x))

, where 𝛼 is a class 𝜅 function. This means that
B(x) tends to infinity as h(x) approaches zero (the states approach the boundaries), and B equals zero as h(x) becomes
very large (far from the boundaries). Additionally, the condition (14) allows the BF to increase rapidly when solutions
are far from 𝜕𝒞 , and this growth gradually decreases as solutions approach 𝜕𝒞 . The BF serves as a repulsive force that
prevents the trajectory from crossing the boundary of the safe set. Therefore, its properties are essential in establishing
the forward invariance of the set 𝒞 under the system’s dynamics as demonstrated in the following theorem which was
proved in Reference 35.

Theorem 1. Given a set 𝒞 ⊂ Rn defined in (2), if there exists a BF B: 𝒞 → R, then 𝒞 is forward invariant.
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F I G U R E 2 Effect of 𝛾 on B𝛾 for h(x) = x + 1.5.

Although any CBF function that satisfies Definition 1 can be employed, the following candidate is adopted in this
article25,26:

B𝛾 (x) = − log
(

𝛾h(x)
𝛾h(x) + 1

)

, (15)

where 𝛾 > 0 plays a crucial role in determining the behavior of the CBF. It controls the rate of decay of B𝛾 (x) as the system
moves away from the safety boundary. Specifically, larger values of 𝛾 result in faster attenuation. By a proper selection of
𝛾 , B𝛾 (x) can reach very close to zero as shown in Figure 2.

The CBF concept is closely related to CLF. While CBFs are used to enforce constraints on the system’s behavior, CLFs
are employed to guarantee the closed-loop system dynamics stability. The standard definition36 of a CLF for system (1) is
given as follows.

Definition 2. A positive definite, radially unbounded, differentiable function V(x) is a CLF if there exists a
class 𝜅 function 𝛼(x) such that for all x ≠ 0,

inf
u∈𝒰

[Lf V(x) + LgV(x)u + 𝛼(||x||)] ≤ 0. (16)

The combination of CBFs and CLFs provides a powerful framework for designing control laws that not only stabilize
the system but also ensure that it operates safely and within operational constraints. One effective method is based on
QP where in control input based quadratic function is optimized subjected to CBF and CLF constraints that are affine in
control.34,37 The problem is formulated as:

QP problem: Find the control input u and the relaxation variable 𝛿 that satisfy

min
u,𝛿

1
2
(uTu + 𝓁𝛿T

𝛿)

s.t. Lf V(x) + 𝛼(||x||) + LgV(x)u + 𝛿 ≤ 0
Lf B𝛾 (x) − 𝛼B(h(x)) + LgB𝛾 (x)u ≤ 0,

(17)

where 𝓁 ≥ 1 is a large constant intended to render 𝛿 in the solution as small as possible. In Reference 35, it was
demonstrated that the obtained controller is Lipschitz continuous for x ∈ int𝒞 with LgB(x) ≠ 0.

The following sections provide the novel propositions and proofs of this article. The objective of the proposed
methodology is to ensure safety throughout both the exploration and exploitation phases by incorporating CBFs.
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3 SAFE REINFORCEMENT LEARNING

To ensure safety of the learned policy, the reward function is augmented with a CBF function B𝛾 (x) and the cost function
defined in (3) is modified to

W(x0) =
∫

∞

0
rsafe(x,u)dt, x(0) = x0 (18)

with

rsafe(x,u) = q(x) + uTRu + B𝛾 (x). (19)

The proposed cost function imposes significant penalties for points that approach a constraint boundary, thereby changing
the controller dynamics in those regions. As a result, a more cautious control action is enforced when operating near the
safety boundary.

This formulation allows to determine a control policy that guarantees the satisfaction of all inequality constraints
while ensuring a smooth transition between interior and boundary of the safe set. Before solving the optimal control
problem, it is assumed that there exist at least one safe admissible policy, as stated in Assumption 1 below.

Assumption 1. There exists a safe feedback control policy u0:𝒞 →𝒰a that asymptotically stabilizes the system
(1) at the origin and the associated cost defined in (18) is finite.

Definition 3. The set of safe inputs 𝒰c for the current state x is defined as

𝒰c = {u ∈ R
m|xu ∈ int𝒞 }, (20)

xu is the state of the system evolved by the input u.
The set of safe and admissible inputs is then defined by

𝒰a = 𝒰 ∩𝒰c, (21)

where 𝒰 is the admissible control policy for the optimal control problem (3).

The safe Hamiltonian function Hsafe is defined by

Hsafe(W)(x)
Δ
= ∇W T(x)f (x) + q(x) + B𝛾 (x) −

1
4
∇W T(x)g(x)R−1gT(x)∇W(x). (22)

It is assumed that there exists an optimal control policy implying the existence of an optimal value function that satisfies
the safe-HJB equation (23).

Assumption 2. There exists W∗ ∈  , where  is set of all functions in C1 that are positive definite and radially
bounded, such that the safe-HJB equation (23) holds:

Hsafe(W∗(x)) = 0, (23)

where W∗(x) is a well-defined Lyapunov function for the closed-loop system (1) defined as

W∗ = min
u ∫

∞

t
[q(x) + uTRu + B𝛾 (x)]d𝜏, (24)

and u∗ is the safe optimal control policy

u∗(x) = −1
2

R−1gT(x)∇W∗(x), (25)

that asymptotically stabilizes the system at x = 0.
Lemma 1 establishes the uniqueness of solution to the Safe-HJB equation (23).
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Lemma 1. W∗ is the unique solution to the Safe-HJB equation (23), given that W∗ ∈  .

Proof. Let W̃ ∈  be another solution to (23). Then, along the solutions of the closed-loop system composed
of (1) and the control policy

ũ(x) = −1
2

R−1gT(x)∇W̃(x). (26)

We have

[∇W̃(x) − ∇W∗(x)]Tf (x) + ∇W̃ T(x)g(x)ũ − ∇W∗T(x)g(x)u∗ + ∇W̃ T(x)g(x)u∗ − ∇W̃ T(x)g(x)u∗ + ũTRũ − u∗TRu∗

= [∇W̃(x) − ∇W∗(x)]T[f (x) − g(x)u∗] + ∇W̃ T(x)g(x)(ũ − u∗) + ũTRũ − u∗TRu∗

= [∇W̃(x) − ∇W∗(x)]T[f (x) − g(x)u∗] − 2ũTR[ũ − u∗] + ũTRũ − u∗TRu∗

= [∇W̃(x) − ∇W∗(x)]T[f (x) − g(x)u∗] − (ũ − u∗)TR(ũ − u∗)
= 0. (27)

Therefore, for any x0 ∈𝒞 , along the trajectories of system (1) with u = u∗, it gives

[W̃(xT) −W∗(xT)] − [W̃(x0) −W∗(x0)] =
∫

T

0
(ũ − u∗)TR(ũ − u∗)dt. (28)

Since u∗ is stabilizing, limT→+∞ W∗(x(T)) = 0 and limT→+∞ W̃∗(x(T)) = 0, it follows that

−[W̃(x0) −W∗(x0)] =
∫

T

0
(ũ − u∗)TR(ũ − u∗)dt ≥ 0. (29)

Thus W̃(x) ≤ W∗(x), ∀x ∈ 𝒞 . Moreover, we have

[∇W∗(x) − ∇W̃(x)]T[f (x) − g(x)ũ] − (ũ − u∗)TR(ũ − u∗) = 0. (30)

By following the same steps, we obtain W̃(x) ≥ W∗(x).
Thus, it can be concluded that W̃(x) = W∗(x), ∀x ∈ 𝒞 . ▪

3.1 Safe policy iteration

As the nonlinear safe-HJB equation (23) is difficult to be solved analytically, a modified version of PI Algorithm 2 can be
employed to approximate the solution by iteratively updating the value function W (31) and improving the policy (32).

Algorithm 2. Safe policy iteration algorithm

Initialization. Initialize u0 with a safe and admissible policy such as u0 ∈ 𝒰a.
Policy evaluation. Update the value using:

𝛻W T
i (x)[f (x) + g(x)ui] + rsafe(x,ui) = 0. (31)

Policy improvement. The control policy is improved by:

ui+1(x) = −
1
2

R−1gT
𝛻Wi(x). (32)

The convergence property of the proposed safe-PI algorithm is given in the following theorem.38 It demonstrates that,
at each iteration, the algorithm maintains a safe policy, ensuring the invariance of the safe set.

Theorem 2. Suppose Assumptions 1 and 2 hold, and the solution Wi(x) ∈ C1 satisfying (31) exists for i =
0, 1, … . Then, the following properties hold ∀i = 0, 1, … .
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1. W∗(x) ≤ Wi+1(x) ≤ Wi(x) ∀x ∈ 𝒞 .
2. ui is stabilizing.
3. Let limi→∞Wi(x0) = W(x0) and limi→∞ui(x0) = u(x0), ∀x0 ∈ 𝒞 . Then W∗ = W and u∗ = u, if W ∈ C1.
4. For u = ui, xu ∈ int𝒞 , thus ui ∈𝒰c.

The proof of Theorem 2 is given in the Appendix A.1.
Safe-PI algorithm has been proven to be effective in ensuring safety of the learned policy.26 However, it comes

with few challenges that need to be addressed. One of the main challenges is that the initial policy must be safe and
admissible, which can be difficult to ensure in complex systems. Another challenge arises during the data collection
stage, where probing noise is often added to the system to explore and improve learning. While exploration noise can
provide valuable information about the system, it can also violate safety constraints and potentially destabilize the sys-
tem. To ensure the stability of the closed-loop system, it is important to satisfy the input-to-state stability condition when
the probing noise is considered as an input. To address these challenges, a new method that combines safe-PI algorithm
with a novel exploration strategy is developed in the following section. It aims to improve the exploration efficiency while
maintaining the safety and the input-to-state stability of the closed-loop system, even in the presence of the probing noise.

3.2 Safe exploration

The definition of ISS-CLF and R-CBF are provided first with respect to nonlinear system with an external disturbance w
(33). These concepts are used to further address the case where probing noise is added.

ẋ = f (x) + g(x)u + p(x)w. (33)

The system (33) is input-to-state stabilizable if and only if there exists an ISS-CLF. The definition of ISS-CLF was
introduced in Reference 39.

Definition 4. A positive definite, radially unbounded function V is an ISS-CLF if there exists class 𝜅∞
functions 𝛼, 𝜂 such that, for ||x|| ≥ 𝜂(||w||),

inf
u∈𝒰

[Lf V(x) + LgV(x) + |
|
|
|LpV(x)||||𝜂

−1(||x||) + 𝛼(||x||)] ≤ 0. (34)

A function B𝛾 (x) is an R-CBF40 with respect to 𝒞 if it satisfies the conditions described in (35).

Definition 5. A function B𝛾 (x) is an R-CBF with respect to the set𝒞 if B𝛾 (x) is positive for x ∈ int𝒞 , B𝛾 (x) →
∞ as x → 𝜕𝒞 , and there exists a class 𝜅 function 𝛼B such that

inf
u∈𝒰

[Lf B𝛾 (x) + LgB𝛾 (x) + |
|
|
|LpB𝛾 (x)||||w-𝛼B(h(x))] ≤ 0. (35)

By combining the concepts of ISS-CLF and R-CBF, a control policy can be designed to maintain stability and guarantee
system safety. This approach allows for careful and marginal adjustments to the policy while ensuring that the system
operates within predefined safe boundaries, thereby minimizing potential risks. Furthermore, for systems affected by
probing noise e:

ẋ = f (x) + g(x)(u + e). (36)

The Definitions 4 and 5 can be adapted by replacing w with e and p(x)with g(x). In this context, e is added to the feedback
input during the learning process to encourage exploration of the state space and prevent the agent from getting stuck
in a suboptimal solution. With this setup, consider the following constrained stabilization problem for the system (36)
impacted by input noise.

Robust-QP problem: Find the control usafe and the relaxation variable 𝛿 that satisfy

min
usafe,𝛿

1
2
(

uT
safeusafe + 𝓁𝛿T

𝛿
)

s.t. F1 = a1 + b1(u + usafe) + 𝛿 ≤ 0
F2 = a2 + b2(u + usafe) ≤ 0

(37)
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with

a1 = Lf V(x) + ||LgV(x)||𝜂−1(||x||) + 𝛼(||x||)
a2 = Lf B𝛾 (x) + ||LgB𝛾 (x)||e(t) − 𝛼B(h(x))
b1 = LgV(x)
b2 = LgB𝛾 (x).

Assumption 3. The gradients of the R-CBF B𝛾 and ISS-CLF V , 𝛼, 𝛼B, 𝜂−1 are assumed to be Lipschitz
continuous.

The solution of the Robust-QP problem (see Appendix A.2) described above plays a crucial role in ensuring the safety
and admissibility of the policy within the context of the off-policy algorithm, as discussed in the following section.

3.3 Safe off-policy algorithm

In the safe off-policy algorithm, during the exploration phase, data collection is performed using an initial control policy
that must satisfy two critical properties: safety and admissibility. These properties ensure that the policy remains safe
and valid even in the presence of probing noise. By making minimal adjustments to the policy using the solution derived
from the Robust-QP formulation, the resulting policy can effectively maintain its safety and admissibility. This approach
enables successful exploration while upholding the necessary safety constraints throughout the learning process. Now,
consider the system

ẋ = f (x) + g(x)[u0 + e + usafe]. (38)

Then, (38) can be rewritten as

ẋ = f (x) + g(x)ui + g(x)𝜈i, (39)

where 𝜈i = u0 + e + usafe − ui = us − ui and unoisy = u0 + e.

Remark 1. The initial policy u0,random is randomly generated which implies that it can be a non admissible
and unsafe policy. Then the solution of the Robust-QP problem usafe is added to the random policy to ensure
that the resulting control policy, denoted u0, is both safe and admissible so that Assumption 1 is satisfied, thus
u0 = u0,random + usafe.

Remark 2. unoisy refers to the policy after adding the probing noise e. The purpose of adding e is indeed to
excite the system states and collect rich data during the exploration phase. Examples of such noise are random
noises,41 sinusoidal signals,33 and decayed signals.42 However, it’s important to note that adding such noise
can introduce a risk of violating safety boundaries and potentially destabilizing the system. To address this
problem, the solution of the Robust-QP problem usafe is added to unoise giving us = unoisy + usafe.

For all i ≥ 0, the time derivative of Wi(x) along the solutions of (39) is given by

Ẇ i = ∇W T
i (x)[f (x) + g(x)ui + g(x)𝜈i] = −q(x) − uT

i Rui − B𝛾 (x) − 2uT
i+1R𝜈i. (40)

By integrating both sides of (40) over any time interval [t, t + T], it gives

Wi(x(t + T)) −Wi(x(t)) = −
∫

t+T

t
[q(x) + uT

i Rui + B𝛾 (x) + 2uT
i+1R𝜈i]dt. (41)

Let Ω be a compact containing the origin as an interior point, the value function Wi (referred to as the critic) and the
control policy ui+1 (referred to as the actor) can be approximated by using the basis function representation:

Ŵi(x) = ĈiΦ(x), (42)

ûi+1(x) = ÛiΨ(x) (43)
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withΦ = [𝜙1, 𝜙2 … 𝜙N1]
T andΨ = [𝜓1, 𝜓2 … 𝜓N2 ]

T , are two finite vectors of linearly independent smooth basis functions
on Ω. Ĉi ∈ R1×N1 and Ûi ∈ Rm×N2 are the weights matrices to be determined.

Lemma 2. The weights Ĉi and Ûi can be obtained by solving the following least-squares (LS) equation:

Θ̃N
i

⎡
⎢
⎢
⎣

vec(Ĉi)
vec

(

ÛT
i

)
⎤
⎥
⎥
⎦

= ẼN
i (44)

for N > N1 +mN2 and

Θ̃N
i = [Θ̃i(t1), … , Θ̃i(tN)]T

ẼN
i = [Ẽi(t1), … , Ẽi(tN)]T , (45)

where

Θ̃i(t) =
⎡
⎢
⎢
⎣

[Φ(x(t + T)) − Φ(x(t))]T

2
[

IuΨ(R ⊗ IN2) − IΨΨ
(

ÛT
i−1R ⊗ IN2

)]
⎤
⎥
⎥
⎦

T

, (46)

Ẽi(t) = −IΨΨ
[

ÛT
i−1 ⊗ ÛT

i−1]vec(R) −
∫

t+T

t
[q(x) + B𝛾 (x)

]

dt. (47)

Proof. Replacing Wi, ui, and ui+1 in (41) with their approximations (42) and (43) gives

Ĉi[Φ(x(t)) − Φ(x(t + T))] = −
∫

t+T

t
2ΨT(x)ÛT

i R�̂�idt −
∫

t+T

t

[
q(x) + ûT

i Rûi + B𝛾 (x)
]

dt, (48)

where û0 = u0, �̂�i = u − ûi. Thus,

∫

t+T

t
ΨT(x)ÛT

i R�̂�idt =
∫

t+T

t
ΨT(x)ÛT

i R[us − ûi]dt. (49)

The following equations can be derived:

∫

t+T

t
ΨT(x)ÛT

i Rusdt =
∫

t+T

t
[uT

s R ⊗ΨT(x)]vec
(

ÛT
i

)

dt

=
∫

t+T

t
[uT

s ⊗ΨT(x)][RT
⊗ IN2]vec

(

ÛT
i

)

dt

= IuΨ[R ⊗ IN2]vec
(

ÛT
i

)

, (50)

∫

t+T

t
ΨT(x)ÛT

i Rûidt =
∫

t+T

t
ΨT(x)ÛT

i RÛi−1Ψ(x)dt

=
∫

t+T

t
[ΨT(x)ÛT

i−1R ⊗ΨT(x)]vec
(

ÛT
i

)

dt

=
∫

t+T

t
[ΨT(x)⊗ΨT(x)]dt[ÛT

i−1R ⊗ IN2]vec
(

ÛT
i

)

= IΨΨ[Û
T
i−1R ⊗ IN2]vec

(

ÛT
i

)

. (51)

By substituting (50) and (51) in (49), we obtain

∫

tk+1

tk

ΨT(x)ÛT
i R�̂�idt = IuΨ[R ⊗ IN2 ]vec

(

ÛT
i

)

− IΨΨ[Û
T
i−1R ⊗ IN2]vec

(

ÛT
i

)

. (52)
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Moreover, we have

∫

t+T

t
ûT

i Rûidt =
∫

t+T

t
ΨT(x)ÛT

i−1RÛi−1Ψ(x)dt = IΨΨ
[

ÛT
i−1 ⊗ ÛT

i−1

]

vec(R). (53)

Finally, by replacing (52) and (53) in (48), we get

[Φ(x(t + T)) − Φ(x(t))]TĈT
i + 2

[

IuΨ(R ⊗ IN2) − IΨΨ
(

ÛT
i−1R ⊗ IN2

)]

vec
(

ÛT
i

)

= −IΨΨ
[

ÛT
i−1 ⊗ ÛT

i−1

]

vec(R) −
∫

t+T

t
[q(x) + B𝛾 (x)]dt. (54)

Equation (54) is rewritten in regression form as

Θ̃i(t)
⎡
⎢
⎢
⎣

vec(Ĉi)
vec

(

ÛT
i

)
⎤
⎥
⎥
⎦

= Ẽi(t) (55)

with

Ẽi(t) = −IΨΨ
[

ÛT
i−1 ⊗ ÛT

i−1

]

vec(R) −
∫

t+T

t
[q(x) + B𝛾 (x)]dt, (56)

Θ̃i(t) =
⎡
⎢
⎢
⎣

[Φ(x(t + T)) − Φ(x(t))]T

2
[

IuΨ(R ⊗ IN2) − IΨΨ
(

ÛT
i−1R ⊗ IN2

)]

.

⎤
⎥
⎥
⎦

T

. (57)

Equation (55) includes N1 +mN2 unknown parameters that can be estimated using least-square (LS) method.
But first it is important to collect enough state and input data to ensure that there is a sufficient number of
equations to solve for these unknown parameters. Let the collected information be saved in matrices Θ̃N

i and
ẼN

i as

Θ̃N
i = [Θ̃i(t1), … , Θ̃i(tN)]T , ẼN

i = [Ẽi(t1), … , Ẽi(tN)]T .

Hence, the LS equation becomes

Θ̃N
i

⎡
⎢
⎢
⎣

vec(Ĉi)
vec

(

ÛT
i

)
⎤
⎥
⎥
⎦

= ẼN
i (58)

with N > N1 +mN2. ▪

The flowchart, presented in Figure 3, illustrates the structure of the developed algorithm and highlights its three
distinct phases. In the first phase, referred to as policy initialization, a random initial policy is generated and then
marginally modified using the output of the Robust-QP problem for a null noise. This adjustment ensures that the ini-
tial policy satisfies the conditions of safety and admissibility. In the second phase, known as the exploration phase, the
initial policy is enriched by adding probing noise, allowing to excite the system and to collect diverse and valuable data.
Additionally, the Robust-QP problem is employed in this phase to ensure that the safety constraints are satisfied and
to guarantee that the system is ISS when e, the exploration noise, is considered as an input. Once the data collection is
completed, the algorithm proceeds to the third phase, where the safe-PI algorithm is iteratively computed. This itera-
tive process continues until the weights of the value function converge, leading to the determination of an optimal and
safe policy.

To evaluate the effectiveness of the developed algorithm, it was applied to two examples. The first example involved
a jet engine surge and stall dynamics, while the second example focuses on controlling a MIMO unstable nonlinear
system.
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F I G U R E 3 Flowchart of safe off-policy algorithm.

4 SIMULATIONS AND RESULTS

4.1 Jet engine dynamics

Consider the following jet engine surge and stall dynamics32

ẋ1 = −0.35x2
1 − 0.35x1(2x2 + x2

2)
ẋ2 = −1.4x2

2 − 0.5x3
2 − (u + 3x1x2 + 3x1), (59)
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where x1 is rotating stall amplitude which is normalized, x2 is the deviation of annulus-averaged flow, u is the deviation
of the plenum pressure rise and is considered as the control input. In this example, the QP problem will consider only
the R-CBF condition. This is due to the fact that the system under consideration is already stable, allowing us to focus
exclusively on addressing the state constraints.

The safe set in which the states of the system should belong to is defined by 𝒞 = {x| − 1.1 < x2 < 0.45}.
To guarantee the forward invariance of this set and to ensure the safety of the system, the following CBFs

are defined.

B1,𝛾 (x) = −
𝛾1h1(x)

𝛾1h1(x) + 1
, B2,𝛾 (x) = −

𝛾2h2(x)
𝛾2h2(x) + 1

(60)

with h1(x) = −xmin
2 + x2 and h2(x) = xmax

2 − x2. The modified formulation (19) is used with the following reward function

rsafe(x,u) = xTQx + uTRu + B1,𝛾 (x) + B2,𝛾 (x), (61)

where Q, R, 𝛾1, 𝛾2 are design parameters, with the following values assigned: Q = diag(20, 10), R = 0.3 × I2×2, 𝛾1 = 0.7 and
𝛾2 = 0.2.

From t = 0 s to t = 6.35 s, an exploration noise e(t) is injected into the initial policy, with e(t) being specifically set to

e(t) =
∑

2 × 𝜔 × sin(𝜗1t) (62)

with 𝜗1 = [1, 3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29] and 𝜔 a random variable with a Gaussian distribution. The activation
functions are considered, respectively, as

Φ(x) = [x2
1 , x2

2 , x1x2, x4
1 , x4

2 , x3
1x2, x2

1x2
2 , x1x3

2 , x6
1 , x6

2 , x5
1x2, x4

1x2
2 , x3

1x3
2 , x2

1x4
2 , x1x5

2 , x8
1 , x8

2 , x7
1x2, x6

1x2
2 , x5

1x3
2 , x4

1x4
2 , x3

1x5
2 , x2

1x6
2 , x1x7

2]
T

Ψ(x) =
[

x1, x2, x1x2, x2
1 , x2

2 , x3
1 , x3

2 , x2
1x3

2 , x2
2x3

1 , x4
1 , x4

2

]T
.

These weights of these networks are trained by finding the solution of (58) for N = 635. The state and input data are
collected over each interval of T = 0.01 s. In this example, the initial policy was not randomly set. Instead, a specific value
was chosen for the policy weights, which is Û0 = [−3 zeros(1, 10)].

R-CBF criteria is formed accordingly based on (37) as

Lf B1,𝛾 (x) + ||LgB1,𝛾 ||(x)e(t) − 𝛼1,B(h1(x)) + LgB1,𝛾 (x)(u + usafe) ≤ 0
Lf B2,𝛾 (x) + ||LgB2,𝛾 ||(x)e(t) − 𝛼2,B(h2(x)) + LgB2,𝛾 (x)(u + usafe) ≤ 0 (63)

with 𝛼1,B = 2000 × h1(x), 𝛼2,B = 2000 × h2(x). These values are chosen high to assure the collection of data not only from
the safe region but also from the vicinity of the safety boundary. Moreover, in the Robust-QP problem, different values
are assigned to 𝛾1 and 𝛾2 such as 𝛾1 = 15 and 𝛾2 = 20. Initially, these values were chosen smaller in order to enhance the
penalty imposed by the barrier function in the cost function.

The trajectory of the state x2, during the exploration phase, is shown in Figure 4, where the safety boundaries are
plotted with dashed black lines. In order to ensure a safe performance, it is necessary for the system trajectory to remain
within these two lines. The blue curve represents the evolution of x2 when the Robust-QP problem is activated to guar-
antee safety. In this case, it is evident that the safety and stability of the system are maintained during the exploration
where noisy input (Figure 5) is introduced to the system. This finding confirms that it is unnecessary to include the
ISS-CLF condition in this example. However, when the Robust-QP problem is deactivated, it can be observed from the
red curve that the state x2 violates the safety boundaries. Figure 5 displays the noisy input used for exploration purposes.
It can be seen that, in order to ensure safety, the unsafe policy (red curve) is slightly adjusted, leading to a safe policy
(blue curve).

After data collection, the safe-PI algorithm is iteratively computed until the convergence of the critic weights is
reached. Figure 6 shows that after 17 iterations, the algorithm has converged. Moreover, for the initial state x0 = [1,−1]T ,
the convergence process of the value function is displayed in Figure 7. This latter confirms the first point of Theorem 2,
which states that the value function exhibits a monotonic decreasing behavior.
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F I G U R E 4 Trajectory of x2 during exploration.

F I G U R E 5 Exploration policy under probing noise.

F I G U R E 6 Convergence of the critic weights.
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F I G U R E 7 Convergence process of the value function at x = [1,−1]T .
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F I G U R E 8 Trajectory of x2 for safe and unsafe learned policy.

Once the safe-PI algorithm has reached convergence, the trained actor is used to control the system. Figure 8 shows
the trajectory of the state variable x2, starting from the initial state and not the state where exploration was interrupted in
order to demonstrate the safety guarantees provided by the learned policy. The figure display two curves:

• the red curve represents the trajectory of x2 for classical off-policy algorithm where no safety guarantees are considered
during the exploration and the exploitation;

• the blue curve represents the trajectory of x2 under the learned policy where the exploration was done in a safe manner
and the reward function was augmented with CBFs.

It can be seen that, under the proposed algorithm, x2 remains within the safe region. In contrast, when using a classical
off-policy algorithm, x2 would violate the safety boundaries. Moreover, the control input behavior is shown in Figure 9
for the two cases.

These results were obtained for the first example, demonstrating the effectiveness of the developed algorithm. In the
following, the results for a nonlinear unstable MIMO system will be presented. In this next example, the initial policy will
be generated randomly and the ISS-CLF will be integrated into the Robust-QP problem.
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F I G U R E 9 Safe and unsafe learned policy.

4.2 Nonlinear MIMO unstable system

Consider a MIMO nonlinear system described by the following differential equations:

ẋ1 = x3
1 − x2 + 2x2

1 + u1 sin(x1) (64)
ẋ2 = −x1 + x3

2 + 3x2
2 + u2 cos(x2)

The safe set is defined by 𝒞 = {x| − 1.05 < x2 < 0.3}. The reward function (61) is used with Q = 0.35 × I2×2, R =
0.1 × I2×2, 𝛾1 = 3500 and 𝛾2 = 3000. It’s important to note that by assigning a small value to Q, the cost associated with
the system’s behavior is reduced. However, if the value of 𝛾 is also small, the BF term will have a greater influence on the
overall cost function. To maintain a balance between the barrier function and the overall cost, higher values for 𝛾1 and
𝛾2 are chosen. Moreover, since the upper bound is located close to the system’s equilibrium, it is crucial to impose a high
penalty only when the system is in close proximity to this bound. By selecting higher values for 𝛾1 and 𝛾2, the penalty
associated with the BF is increased only when the system approaches the upper bound, thus ensuring strict adherence to
safety constraints.

From t = 0 s to t = 2.85 s, the exploration noise e(t) is injected into the initial policy, with e(t) being set to

e(t) =
∑

0.6 × sin([1, 3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 27]t). (65)

The activation functions are considered, respectively, as

Φ(x) = [x2
1 , x2

2 , x1x2, x4
1 , x4

2 , x3
1x2, x2

1x2
2 , x1x3

2 , x6
1 , x6

2 , x5
1x2, x4

1x2
2 , x3

1x3
2 , x2

1x4
2 , x1x5

2 , x8
1 , x8

2 , x7
1x2, x6

1x2
2 , x5

1x3
2 , x4

1x4
2 , x3

1x5
2 , x2

1x6
2 , x1x7

2]
T

Ψ(x) =
[

x1, x2, x1x2, x2
1 , x2

2

]T
.

R-CBF criteria is given in (63) and ISS-CLF condition is given by

Lf V(x) + ||LgV(x)|||e(t)| + 𝛼(||x||) + LgV(x)(u + usafe) + 𝛿 ≤ 0. (66)

In this example, the initial policy is generated randomly, then it is modified by solving the Robust-QP problem for e(t) = 0
in order to satisfy the stability and the safety conditions. During the initialization phase, the hyperparameters of the
Robust-QP problem are set to 𝛾1 = 𝛾2 = 10, 𝛼1,B = 0.4 × h1(x), 𝛼2,B = 0.3 × h2(x), 𝛼 = 70 × ||x||, and the Lyapunov function
V(x) is chosen as V(x) = x2

1 + x2
2.



KANSO et al. 19

F I G U R E 10 Trajectory of x2 during exploration.

F I G U R E 11 Exploration policy under probing noise.

During the exploration phase, the hyperparameters are modified to 𝛾1 = 𝛾2 = 20, 𝛼1,B = 10 × h1(x), 𝛼2,B = 10 × h2(x),
and 𝛼 = 0.1 × ||x||. By adjusting these hyperparameters, the algorithm becomes less conservative and allows the collection
of more informative and rich data.

The trajectory of the state x2, during the exploration phase, is shown in Figure 10. The blue curve represents the
evolution of x2 when the Robust-QP problem is activated to guarantee safety and admissibility of the policy. In this case,
it is evident that the safety and stability of the system are maintained during the exploration where noisy input is applied
to the system. However, when the Robust-QP problem is deactivated, it can be observed from the red curve that the state
x2 violates the safety boundary and the system is destabilized. Figure 11 displays the evolution of the input for the two
cases. It can be seen from the red curve that the policy becomes unsafe and inadmissible once the excitation noise is
added. However, when the Robust-QP problem is activated, the opposite behavior is observed, ensuring the safety and
admissibility of the policy.

After collecting the data, the safe-PI algorithm is iteratively computed until the convergence of the critic weights is
reached. Figure 12 shows that, after 15 iterations, the algorithm has converged.
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F I G U R E 12 Convergence of the critic weights.

F I G U R E 13 Trajectory of x2 for the safe and unsafe learned policy with safe exploration.

Once the safe-PI algorithm has reached convergence, the trained actor is used to control the system. Figure 13 shows
the trajectory of the state variable x2, starting from the initial state and not the state where exploration was interrupted in
order to demonstrate the safety guarantees provided by the learned policy. The figure display two curves:

• the green curve represents the trajectory of x2 for off-policy algorithm where safety guarantees are considered during
the exploration but CBFs are not considered in the reward function;

• the blue curve represents the trajectory of x2 under the learned policy where the exploration was done in a safe manner
and the reward function was augmented with CBFs.

It can be deduced that even if the exploration is achieved in a safe manner this does not lead to a safe learned policy.
Hence, to address this problem, CBFs were added to the reward function in order to ensure the convergence toward a safe
policy.
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5 CONCLUSIONS

Overall, the proposed approach presents a novel solution to the problem of safe control learning in off-policy based
approaches for nonlinear systems by introducing guarantees of safety and stability throughout both the exploration
and exploitation phases. The approach comprises three main phases: safe policy initialization, safe exploration, and
safe-PI computation. During the policy initialization phase, an initial policy is randomly generated and subsequently
adjusted to meet safety and admissibility requirements. The exploration phase introduces probing noise, allowing the
collection of diverse and informative data. Simultaneously, the algorithm uses the Robust-QP problem to enforce safety
constraints and maintain system stability throughout the exploration process. Once the data collection is complete,
safe-PI is iteratively computed until convergence to a policy that balances safety, stability and optimality. Simula-
tion results demonstrate the algorithm’s effectiveness in generating safe and stable policies, even in the presence of
probing noise. Moreover, rigorous mathematical proofs are provided to establish the stability and safety guarantees of
the algorithm.

While the proposed algorithm has demonstrated promising results in ensuring safety and stability, one aspect to con-
sider is the reliance on the system model to solve the Robust-QP problem. To address this limitation, future work will focus
on assuming only a nominal model is available, and the uncertainty of the model will be approximated using machine
learning techniques like neural networks or Gaussian processes.

ACKNOWLEDGMENTS
The authors are thankful to anonymous reviewers.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID
Soha Kanso https://orcid.org/0009-0003-0921-1939
Mayank Shekhar Jha https://orcid.org/0000-0002-6926-1386

REFERENCES
1. Knight JC. Safety critical systems: challenges and directions. Proceedings of the 24th International Conference on Software Engineering.

IEEE; 2002:547-550.
2. Alleyne A, Allgöwer F, Ames A, et al. Control for societal-scale challenges: road map 2030. 2022 IEEE CSS Workshop on Control for

Societal-Scale Challenges. IEEE Control Systems Society; 2023.
3. Zhou K, Doyle JC. Essentials of Robust Control. Vol 104. Prentice Hall; 1998.
4. Zhang S, Zhai DH, Xiong Y, Lin J, Xia Y. Safety-critical control for robotic systems with uncertain model via control barrier function. Int

J Robust Nonlinear Control. 2023;33(6):3661-3676.
5. Brunke L, Greeff M, Hall AW, et al. Safe learning in robotics: from learning-based control to safe reinforcement learning. Annu Rev Control

Robot Auton Syst. 2022;5:411-444.
6. Sutton RS, Barto AG. Reinforcement Learning: An Introduction. MIT Press; 2018.
7. Lewis FL, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst Mag.

2009;9(3):32-50. doi:10.1109/MCAS.2009.933854
8. Jha MS, Theilliol D, Weber P. Model-free optimal tracking over finite horizon using adaptive dynamic programming. Optim Control Appl

Methods. 2023;44:3114-3138.
9. Yang Y, Modares H, Vamvoudakis KG, Lewis FL. Cooperative finitely excited learning for dynamical games. IEEE Trans Cybern. 2023.
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APPENDIX A

A.1 Proof of Theorem 2
Before developing the proof of Theorem 2, Lemma 3 is given.

Lemma 3. Under Assumption 2, the following holds:
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1.

W∗(x) ≤ Wi(x); (A1)

2. for any Wi−1 ∈  , satisfying

∇W T
i−1[f (x) + g(x)ui] + q(x) + uT

i Rui + B𝛾 (x) ≤ 0, (A2)

it follows that Wi ≤ Wi−1;3.

∇W T
i [f (x) + g(x)ui+1] + q(x) + uT

i+1Rui+1 + B𝛾 (x) ≤ 0. (A3)

Proof.

1. First, we want to prove that Wi(x) ≥ W∗(x). Under Assumption 2, we have

∇W∗T(x)[f (x) + g(x)u∗] + r(x,u∗) = 0. (A4)

It follows that

∇Wi(x) − ∇W∗(x) ]T[f (x) + g(x)ui] + ∇W∗T(x)g(x)[ui − u∗] + uT
i Rui − u∗TRu∗

= [∇Wi(x) − ∇W∗(x)]T[f (x) + g(x)ui] − 2u∗TR[ui − u∗] + uT
i Rui − u∗TRu∗

= [∇Wi(x) − ∇W∗(x)]T[f (x) + g(x)ui] + (u∗ − ui)TR(u∗ − ui)
= 0. (A5)

Hence, ∀ x0 ∈𝒞 , along the trajectories of system (1) with u = ui and x(0) = x0, the following holds:

Wi(x0) −W∗(x0) =
∫

∞

0
(u∗ − ui)TR(u∗ − ui)dt ≥ 0, (A6)

which implies that Wi(x) ≥ W∗(x), ∀x ∈ 𝒞 .
2. We have

∇W T
i−1(x)[f (x) + g(x)ui] + q(x) + uT

i Rui + B𝛾 (x) ≤ 0. (A7)

Let m(x) ≥ 0, such that

∇W T
i−1(x)[f (x) + g(x)ui] + q(x) + uT

i Rui + B𝛾 (x) = −m(x). (A8)

Since ∇W T
i (x)[f (x) + g(x)ui] + rsafe(x,ui) = 0, it follows

[∇Wi−1(x) − ∇Wi(x)]T[f (x) − g(x)ui] = −m(x). (A9)

Hence, ∀ x0 ∈𝒞 , along the trajectories of system (1) with u = ui and x(0) = x0, the following holds:

Wi(x0) −Wi−1(x0) = −
∫

∞

0
m(x) < 0. (A10)

Thus Wi(x) < Wi−1(x), ∀x ∈ 𝒞 .
3. The goal is to show that

∇W T
i (x)[f (x) + g(x)ui+1] + q(x) + uT

i+1Rui+1 + B𝛾 (x) ≤ 0. (A11)



24 KANSO et al.

By definition

∇W T
i [f (x) + g(x)ui+1] + q(x) + uT

i+1Rui+1 + B𝛾 (x)
= ∇W T

i (x)[f (x) + g(x)ui+1] + q(x) + uT
i+1Rui+1 + B𝛾 (x) + ∇W T

i g(x)ui − ∇W T
i g(x)ui + uT

i Rui − uT
i Rui

= ∇W T
i [f (x) + g(x)ui] + q(x) + uT

i Rui + B𝛾 (x) + ∇W T
i g(x)[ui+1 − ui] + uT

i+1Rui+1 − uT
i Rui

= ∇W T
i g(x)[ui+1 − ui] + uT

i+1Rui+1 − uT
i Rui

= −2uT
i+1R[ui+1 − ui] + uT

i+1Rui+1 − uT
i Rui

= −[ui+1 − ui]TR[ui+1 − ui] ≤ 0. (A12)

The proof of Lemma 3 is complete. ▪

Now, the proof of Theorem 2 will be developed in the following.

Proof. First, Theorems 2.1 and 2.2 are shown to be true by induction, moreover it is proved that Wi ∈  , for
all i = 0, 1, …

(a) For i = 1, it follows from Assumption 1, Lemmas 3.1 and 3.2 that Theorems 2.1 and 2.2 are true. Under
Assumptions 1 and 2, W∗ ∈  and W0 ∈  thus W1 ∈  .

(b) Suppose Theorems 2.1 and 2.2 hold for i = j > 1 and Wj ∈  , we want to show that Theorems 2.1 and 2.2
also hold for i = j + 1 and Wj+1 ∈  .

Since W∗ ∈  and Wj ∈  , we deduce that Wj+1 ∈  .
By Lemma 3.3, one obtains

∇W T
j+1(x)[f (x) + g(x)ui+2] + q(x) + uT

i+2Rui+2 + B𝛾 (x) ≤ 0. (A13)

Along the solutions of system (1) for u = uj+2, one obtains Ẇ j+1 ≤ 0. Since Wj+1 ∈  , it is a well-defined
Lyapunov function for the closed-loop system (1) with u = uj+2. Therefore, uj+2 is a stabilizing policy which
implies that Theorem 2.2 holds for i = j + 1.

From Lemma 3.2, we have Wj+2 ≤ Wj+1 and by induction assumption we have W∗(x) ≤ Wj+1(x) ≤ Wj(x),
which gives

W∗(x) ≤ Wj+2(x) ≤ Wj+1(x).

Hence, Theorem 2.1 holds for i = j + 1.
If such a pair (W ,u) exists, we already know that the solution of safe-HJB is unique, thus we can deduce

that W∗ = W and u∗ = u.
Now, it must be shown that at each iteration ui is safe, thus we want to show that the states under policy

ui remain in the safe set 𝒞 . Earlier, we have proved that W∗(x) ≤ Wi+1(x) ≤ Wi(x) ≤ W0, which implies that
at each iteration Wi is bounded and consequently the reward r(x,ui) and the barrier function B𝛾 remains
bounded after each policy improvement step. Moreover, B𝛾 tends to infinity near the boundary of the safe set,
implying that the system states does not cross 𝜕𝒞 . This in turn guarantees safety and prove that ui ∈ 𝒰c. ▪

A.2 Solution of Robust-QP problem
The Lagrangian ℒ (x,u, 𝛿, 𝜆1, 𝜆2) for the Robust-QP problem is given by

ℒ = 1
2
(||usafe||

2 + 𝓁||𝛿||2) + 𝜆1(a1 + b1(u + usafe) + 𝛿) + 𝜆2(a2 + b2(u + usafe)) (A14)

with 𝜆1 and 𝜆2 are scalar Lagrange multipliers. By applying the Karush–Kuhn–Tucker (KKT) conditions, the optimality
of the solution can be determined. The solution is optimal if and only if 𝜕ℒ

𝜕usafe
and 𝜕ℒ

𝜕𝛿
are equal to 0, 𝜆i ≥ 0, Fi ≤ 0, and
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𝜆iFi = 0 for i = 1, 2:
𝜕ℒ
𝜕usafe

= uT
safe + 𝜆1b1 + 𝜆2b2 = 0

𝜕ℒ
𝜕𝛿

= 𝓁𝛿T + 𝜆1 = 0 (A15)

𝜆1F1 = 𝜆1[a1 + b1(u + usafe) + 𝛿] = 0
𝜆2F2 = 𝜆2[a2 + b2(u + usafe) + 𝛿] = 0.

The four cases will be examined and studied based on the active constraints.

Case 1 (F1 < 0 or x = 0, F2 < 0, 𝜆1 = 0, 𝜆2 = 0). In this case, both constraints are inactive, the solutions to
the first two equations in (A15) yield to:

usafe = 0
𝛿 = 0. (A16)

It is reasonable and consistent that in this particular scenario, where both conditions are already satisfied,
there is no necessity to adjust the input.

Case 2 (F1 = 0, F2 < 0, 𝜆1 ≥ 0, 𝜆2 = 0). In this case, the barrier constraint is inactive and the solution to
(A15) is given by:

usafe =
−𝓁bT

1 (a1 + b1u)
𝓁||b1||2 + 1

(A17)

𝛿 = −a1 − b1u
𝓁||b1||2 + 1

.

However, it is important to emphasize that even when the barrier constraint is not active, the control law does
not provide a guarantee that V̇(x) < 0, where V̇ is given by:

V̇ = Lf V(x) + LgV(x)(u + e + usafe). (A18)

This is because the slack variable 𝛿, which helps satisfy the constraints, is a fictitious quantity. In this case, if
m is very small, the expression for V̇ reduces to V̇ = Lf V(x) + LgV(x)(u + e), indicating that the controller in
(A17) may not be able to stabilize the system. On the other hand, for m very large, V̇ takes the form:

V̇ = LgV(x)e − ||LgV(x)||𝜂−1(||x||) − 𝛼(||x||).

It can be observed that the closed-loop system exhibits input-to-state stability with respect to the noise e when
||x|| ≥ 𝜂(||e||). Hence, it is important to note that the selection of an appropriate value for the parameter m is
crucial. The choice of m can significantly impact the stability of the closed-loop system.

Case 3 (F1 < 0, F2 = 0, 𝜆1 = 0, 𝜆2 ≥ 0). In this case, the ISS constraint is inactive, and the solution to (A15)
is as follows:

usafe =
−bT

2 (a2 + b2u)
||b2||2

(A19)

𝛿 = 0.

It is observed that the slack variable 𝛿 is null. This means that there is no need for an additional term to satisfy
the ISS constraint since the system already satisfies it without any modifications. However, it is important
to note that the existence of this solution depends on the condition that LgB(x) ≠ 0. This condition ensures
that the control input can be properly determined based on the system dynamics and constraints, leading to
a well-defined solution.
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Case 4 (F1 = 0, F2 = 0, 𝜆1 ≥ 0, 𝜆2 ≥ 0). Both constraints are activated and the solution takes the form:

usafe =
−bT

2 (a2 − b2u)
||b2||2

(A20)

𝛿 =
−a1||b1||

2 − b1u||b1||
2 − bT

2 (a2 − b2u)
||b1||2

.

Here, b1 and b2 must be different from 0 so that the solution can be well-defined.
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