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Lithium-ion batteries are widely used in various applications, including electric vehicles and 
renewable energy storage. The prediction of the remaining useful life (RUL) of batteries is crucial 
for ensuring reliable and efficient operation, as well as reducing maintenance costs. However, 
determining the life cycle of batteries in real-world scenarios is challenging, and existing methods 
have limitations in predicting the number of cycles iteratively. In addition, existing works often 
oversimplify the datasets, neglecting important features of the batteries such as temperature, 
internal resistance, and material type. To address these limitations, this paper proposes a two-

stage RUL prediction scheme for Lithium-ion batteries using a spatio-temporal multimodal 
attention network (ST-MAN). The proposed ST-MAN is to capture the complex spatio-temporal 
dependencies in the battery data, including the features that are often neglected in existing works. 
Despite operating without prior knowledge of end-of-life (EOL) events, our method consistently 
achieves lower error rates, boasting mean absolute error (MAE) and mean square error (MSE) 
of 0.0275 and 0.0014, respectively, compared to existing convolutional neural networks (CNN) 
and long short-term memory (LSTM)-based methods. The proposed method has the potential to 
improve the reliability and efficiency of battery operations and is applicable in various industries.

1. Introduction

Lithium-ion batteries have become indispensable power sources across diverse applications, spanning from electric vehicles and 
renewable energy storage to consumer electronics and industrial systems [5]. As their significance continues to grow, accurate pre-

diction of the Remaining Useful Life (RUL) of these batteries assumes paramount importance. RUL prediction not only optimizes 
resource utilization but also enhances operational reliability and minimizes maintenance expenses, safeguarding the efficiency and 
longevity of battery-driven systems. In today’s industrial landscape, reliable and efficient Lithium-ion battery operation underpins a 
spectrum of outcomes, from extended electric vehicle ranges to optimized renewable energy systems. Nonetheless, predicting RUL 
reliably is a formidable challenge due to the intricate interplay of factors governing battery degradation.
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Nomenclature

ADLSTM Adaptive Dropout LSTM

Ah Ampere Hour

CNN Convolution Neural Network

EOL End of Life

ELM Extreme Learning Machine

FC Fully Connected

FLOPs Floating Point Operations

FPC First Prediction Cycle

GPR Gaussian Process Regression

GRU Gated Recurrent Units

HS Health State

HUST Huazhong University of Science and Technology

ISSA-MKELM Sparrow Search Algorithm

LSTM Long Short Term Memory

MCT Minimum Cycle Threshold

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

MKELM Multiple Kernel ELM

PSO Particle Swarm Optimization

RMSE Root Mean Squared Error

RUL Remaining Useful Life

SOC State of Charge

ST-MAN Spatio-Temporal Multimodal Attention Network

TCN Temporal Convolutional Network

Past attempts to predict RUL have yielded diverse methodologies encompassing model-based and data-driven approaches. Model-

based methods use mathematical equations to build mechanism models to capture internal electrochemical reactions and prognosti-

cate RUL. These models mainly consider internal attenuation mechanism factors, including loss of lithium and loss of active material 
in the electrodes [2,41]. Empirical models, such as exponential models and polynomial models, have been utilized to predict the 
degradation trend of Lithium-ion battery capacities [53]. In addition, adaptive filter techniques, including the Kalman filter, have 
been adopted to update the model parameters [51]. However, these approaches often exhibit significant RUL prediction errors when 
confronted with real-world complexities and uncertainties, despite the advantages of interpretability and the lack of a training pro-

cedure associated with data-driven methods.

Conversely, data-driven methods have garnered substantial attention for their adaptability and ability to learn from data without 
necessitating exhaustive knowledge of underlying physics. Data-driven methods predict the RUL by training the degradation data 
of the Lithium-ion batteries with statistical and machine learning algorithms. Various machine learning algorithms, including sup-

port vector regression (SVR) [56], naive Bayes (NB) [26], Gaussian process regression (GPR) [50], convolutional neural networks 
(CNN) [57,20], and long short-term memory (LSTM) networks [16,22,42], have been utilized to predict the RUL of Lithium-ion 
batteries. However, data-driven methods require a substantial volume of historical degradation data for model training and exhibit 
limitations, notably in capturing intricate correlations between various degradation influencers. The majority of prevailing techniques 
predominantly focus on discharge capacity as a health indicator, failing to account for pivotal factors substantially shaping battery 
performance and degradation. In particular, existing data-driven methods require discharge capacity data from more than 25% of 
total charge-discharge cycles, potentially overlooking sudden degradations in battery performance.

Furthermore, conventional methods for RUL prediction grapple with limitations that curtail their efficacy in real-world scenarios 
[31,24]. Conventional deep learning models, for instance, attempt to predict discharge values for later timestamps/cycles by inputting 
a percentage of the initial discharge capacity. Additionally, these data-driven approaches assume uniformity in data sources, presup-

posing that both training and test data originate from identical sensors under comparable operating conditions or share identical 
distributions.

These conventional approaches face challenges in iteratively forecasting the number of cycles until battery end-of-life (EOL), 
relying on static models ill-suited for adapting to dynamic operational variations. Moreover, they tend to oversimplify datasets, 
disregarding crucial variables such as temperature, internal resistance, and material type [3,20]. Neglecting these essential parameters 
compromises the models’ ability to accurately capture the intricacies of battery degradation mechanisms. In summary, the limitations 
of prevailing RUL prediction methods are twofold. Firstly, many struggle to dynamically forecast RUL across multiple cycles, limiting 
their applicability in dynamic real-world settings. Secondly, these approaches often overlook vital factors like temperature, internal 
resistance, and material type, resulting in imprecise and overly simplistic predictions.

Furthermore, precise identification of a battery’s health state (HS) is paramount for accurate RUL prediction. Unfortunately, many 
conventional hybrid methods fall short of recognizing the first prediction cycle (FPC), which signifies the commencement of the 
unhealthy stage [39,40]. Neglecting to pinpoint the FPC can lead to suboptimal RUL predictions, particularly when the HS of the 
battery exhibits minimal differences in the run-to-failure training dataset.

To overcome these limitations, in this paper, we propose a novel two-stage RUL prediction scheme for Lithium-ion batteries 
employing a spatio-temporal multimodal attention network (ST-MAN) architecture, aimed at addressing the critical challenge of RUL 
estimation in real-world scenarios where precise EOL information is often unavailable. In the initial stage, our approach delineates 
the transition to the unhealthy state, effectively segmenting degradation data into discernible health stages. Subsequently, in the 
second stage, we predict the RUL as a percentage in the unhealthy state after the FPC. By considering a broader range of features, 
including discharge capacity, charge capacity, temperature, internal resistance, and charge time, we improve prediction accuracy and 
robustness. To improve the performance of the RUL prediction and generality of the model, we propose the ST-MAN which can adeptly 
capture intricate spatio-temporal connections inherent in multimodal battery degradation data. Our novel ST-MAN architecture for 
2

the RUL prediction combines CNN, LSTM, and spatio-temporal attention units to effectively capture intricate degradation patterns. 
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Through a series of experiments on two public Lithium-ion battery datasets including the MIT dataset [34] and HUST dataset [21], 
we demonstrate the effectiveness of the proposed two-stage scheme and the network architecture.

The primary contributions of this paper can be summarized as follows.

• We introduce a two-stage RUL prediction scheme, involving the prediction of FPC in the first stage and the degradation pattern 
prediction in the second stage.

• We automatically annotate the degradation pattern as a percentage by determining the FPC to train the proposed ST-MAN model.

• We introduce an innovative ST-MAN architecture, combining CNN, spatio-temporal attention, and LSTM units, to capture intricate 
degradation patterns effectively.

• We validate our proposed method through rigorous experimentation, showcasing its superiority over existing CNN and LSTM-

based methods on widely recognized battery degradation datasets.

The remainder of this paper is structured as follows. Section 2 introduces the related work. Section 3 provides the details of the 
proposed two-stage RUL prediction scheme and ST-MAN architecture. Section 4 presents the descriptions of the datasets used in 
our experiments and provides quantitative and qualitative experimental results on the two datasets. Finally, Section 5 concludes the 
paper.

2. Related work

The landscape of data-driven models for predicting RUL in Lithium-ion batteries has witnessed significant development. Deep 
learning techniques have proven effective in enhancing RUL prediction, thereby augmenting predictive energy management capabili-

ties [44]. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) algorithms have emerged as prominent strategies 
[54,9,52]. Dynamic LSTM variants, such as the work by Song et al. [37], have explored online RUL prediction employing indirect 
voltage measures for health index creation, deviating from traditional capacity-based approaches. Ensemble methods coupled with 
LSTM, as proposed by Liu et al. [19], have accounted for uncertainties using Bayesian model averaging. Ren et al. [29] integrated 
Particle Swarm Optimization (PSO) with LSTM, enabling efficient parameter estimation.

LSTM derivatives like Gated Recurrent Units (GRUs) have also garnered attention. Existing works such as Hannan et al. [7] ad-

dressed State of Charge (SOC) estimation under varying temperatures, while Huang et al. [10] introduced convolutional GRUs, and 
Cui et al. [4] employed attention mechanisms within GRUs for battery prognostics. Complementary approaches include the applica-

tion of Convolutional Neural Networks (CNNs), often combined with other techniques for enhanced performance. Zhou et al. [57]

incorporated causal and dilated convolutions to capture local contextual information. Hybrid architectures like CNNs combined with 
Bi-LSTM, as showcased by Yang et al. [46], have effectively integrated feature extraction and temporal modeling. Fusion strategies 
such as RNN-CNN combinations, as presented by Zhao et al. [55], have demonstrated merit in feature extraction and time dependency 
management.

Extreme Learning Machine (ELM) has garnered attention due to its rapid learning speed and generalization performance, proving 
stable in RUL estimation [44,23,49]. Variations like Kernel ELM (KELM) [8], Multiple Kernel ELM (MKELM) [17], and the incor-

poration of MKELM with the Sparrow Search Algorithm (ISSA-MKELM) [49] have emerged to adapt to complex data relationships. 
Hybrid models have also surfaced; for instance, Wang et al. [43] adopted a Bi-LSTM scheme with an attention mechanism for State of 
Health (SOH) estimation. Meanwhile, Tong et al. [42] innovatively combined Adaptive Dropout LSTM (ADLSTM) and Monte Carlo 
simulation for RUL prediction, achieving accuracy comparable to methods utilizing more data.

Incorporating domain knowledge, Ma et al. [20] integrated CNN and Gaussian Process Regression (GPR) for multi-stage RUL 
prediction. Similarly, Yao et al. [47] harnessed time series data and regression models for multi-cycle RUL prediction. Several works 
focus on using two stages for RUL prediction: Xu et al. [45] for smart manufacturing systems, Song et al. [36] for prognostic health 
management, Qu et al. [28] for railroad systems, and Zhang et al. [48] for mechanical equipment degradation. The data used to 
implement such methods differs from battery data, which is more complex due to varying physical elements and hidden chemical 
reactions inside the battery [35,30,13]. Liu et al. [18] proposed an end-to-end intelligent fault diagnosis and RUL prediction framework 
on ball-bearing data, which contains features such as load ratings, bearing life, fatigue, failure modes, and vibration analysis. In 
contrast, the battery data contains features like charge/discharge cycles, energy density, power density, internal resistance, lifespan, 
failure modes, etc. Our work presents the application of fault diagnosis and RUL prediction on battery data where the physical and 
chemical properties vary from bearings data.

Building upon our prior work [25], which introduced a two-stage LSTM-based RUL prediction framework, this paper presents 
a novel RUL prediction method with the proposed ST-MAN architecture. By capturing intricate spatio-temporal dependencies, this 
method aims to address limitations in existing approaches and advance the accuracy and robustness of RUL prediction for Lithium-ion 
batteries.

3. Proposed method

In this section, we present our innovative RUL prediction framework, depicted in Fig. 1, strategically crafted to address the intri-

cacies of diverse degradation patterns observed in distinct battery cells. Departing from conventional methodologies, our framework 
adopts a two-stage paradigm. It initiates by categorizing the data from each cycle into either a healthy or unhealthy state, a pivotal 
3

classification step that markedly enhances the accuracy of RUL predictions. Our framework has two stages: an HS division stage 
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Fig. 1. Overview of the proposed framework. Stage 1 is the health state (HS) division step using the LSTM classifier and Stage 2 is a remaining useful life (RUL) 
prediction step using the proposed spatio-temporal multimodal attention network (ST-MAN) architecture.

and a RUL prediction stage. Within the HS division stage, our goal is to distinguish between healthy and unhealthy states in the 
degradation patterns of the battery cells. This discrimination plays a crucial role in identifying the FPC, signaling the commencement 
of the unhealthy phase—a pivotal factor for precise RUL predictions.

The FPC prediction is needed because typically, any system remains in its nominal state of functioning in the initial stages of oper-

ation, gradually leading to failure as time advances. This remains the case across the domains (fuel cells, rotary machine components 
like turbines, bearings, etc.) mainly because most of the degradation mechanisms have slow dynamics (crack propagation, battery 
discharge degradation, etc.). Moreover, the need for prognostics (i.e. prediction of end of life) is felt when the system is beyond the 
initial stages of operation i.e. after an initial 40-50% of useful life has been consumed. Usually, RUL forecasts are mainly needed for 
predictive maintenance and as such, their real utility becomes apparent when the real End of life (EOL) approaches. Given these two 
aspects, prognostics of most of the systems are generally not done from the very first second of operation and are usually triggered/” 
switched-on” after the system has functioned for some considerable part of the time (say 40-50%). For example, as proposed in the 
paper [32] thus, leading to such a practice since then within the community) the “True RUL” is considered constant (straight line) 
from the start till a certain point in time owing to the general understanding that assessing prognostics efficiency right from the 
beginning is not useful.

Once the FPC is established, we define the subsequent data as degradation data. Utilizing an extensive array of features, including 
discharge capacity, charge capacity, charging time, temperature, and internal resistance, we forecast the RUL as a percentage from 
the FPC to the end-of-life (EOL). To effectively capture intricate degradation patterns, we propose the ST-MAN, which integrates 
CNN, LSTM, and spatio-temporal attention units.

3.1. First prediction cycle decision

In this subsection, we address the intricate challenge of predicting time-series data with limited availability and inherently non-

linear degradation patterns. Time-series data in the context of Lithium-ion battery health is notably influenced by a multitude of 
factors, including usage patterns, load variations, and dynamic operating conditions. These complexities hinder the precise measure-

ment of the internal reactions occurring inside the battery. To mitigate the data limitations, we employ a sliding window approach, 
characterized by a window size of 50 and a step size of 1, including the different number of channels depending on the dataset. A 
4

window size of 50 is selected by referring to the works presented in [6,1,27,34,15,33].
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Fig. 2. HS division classifier network architecture based on the LSTM units.

Table 1

Mean standard deviation of discharge capac-

ity during initial and last 10% of total cycles.

Dataset Initial 10% Last 10%

MIT [34] 0.002 0.024

HUST [21] 0.004 0.014

Table 2

Information related to number of cycles.

Dataset All Data Initial 10% Last 10%

MIT [34] 810 ± 369 75 ± 36 80 ± 36

HUST [21] 1888 ± 387 183 ± 38 188 ± 38

The first stage of our proposed approach is centered on determining the FPC. This pivotal point signifies the transition from a 
healthy state to an unhealthy state within the battery cell degradation data. However, annotating the data to distinguish between 
healthy and unhealthy segments for training the HS division network poses a significant challenge. To overcome this limitation, we 
adopt a unique approach wherein we designate the initial 10% of the cycles as the healthy state and the final 10% as the unhealthy 
state in the training dataset, as illustrated in Fig. 1.

This strategy not only decreases the need for manual labeling but also enhances the accuracy of HS division, particularly in cases 
where ground truth HS labels are unavailable in most open-access Lithium-ion battery datasets.

The percentage value equal to 10% is selected because the early life of the Lithium-ion battery is defined between the third cycle 
and 40% of the total number of cycles of the battery and the end of life is defined after 80% of the battery’s total number of cycles 
[38]. Hence, we have used as training data for our model the first 10% of the cycles labeled as healthy, and the last 10% of the battery 
cycles labeled as unhealthy to guarantee the data is between the above-mentioned boundaries.

To provide further justification, Table 1 demonstrates how the discharge capacity varies the initial and last 10% of the total 
number of battery cycles, it is evident that the discharge capacity remains relatively stable during the initial 10% of the data, whereas 
significant fluctuations are observed during the last 10%. Moreover, the distribution of cycles in the initial and last 10% of the total 
number of cycles along with the distribution of the total number of cycles in different batteries is presented in Table 2. To provide 
visualization, Fig. 3 shows how the discharge capacity curves look during the initial and last 10% of representative battery life in 
both datasets.

Consider 𝑋𝑖 = [𝑥𝑖1, ...𝑥
𝑖
𝑛
] as input data, representing all features of the 𝑖-th battery cell. A sliding window of size 𝑛𝑤 is applied to 

accommodate the 𝑛𝑓 features, with 𝑥𝑖
𝑗
∈ℝ𝑛𝑓×𝑛𝑤 containing the battery cycle data within that window. The corresponding HS labels 

are defined as:

𝑖

{
0, if 𝑗 < EOL𝑖 × 𝑝
5

𝑦𝐻𝑆𝑗
= 1, if 𝑗 > EOL𝑖 × (1 − 𝑝) (1)
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Fig. 3. Discharge capacity at initial and last 10% of the total cycles examples from MIT (Upper) and HUST dataset (Lower).

where 𝑦𝐻𝑆
𝑖
𝑗

denotes the HS label of 𝑥𝑖
𝑗
, EOL𝑖 represents the total number of cycles in the 𝑖-th battery cell data, and 𝑝 is the percentage 

of the total degradation process set to 10%. Consequently, 20% of the training data is labeled for training the HS division network 
model in the FPC decision stage. The shape of the variable 𝑥𝑖

𝑗
is equal to [Window Size, Number of Channels]. For instance, the input 

dimension for training the model on MIT [34] dataset is [50, 7], where 50 is window size and 7 is the number of features.

The HS division model employs a 1D LSTM architecture, as illustrated in Fig. 2. This network model incorporates one LSTM 
module, comprising three layers. Following the LSTM layers, one fully connected (FC) layer with sigmoid activation functions is 
utilized to classify the HS. For training the HS division model, we use the binary cross entropy (BCE) loss function, quantifying the 
discrepancy between predictions and corresponding HS labels:

𝐿𝐵𝐶𝐸 =𝐸𝑦𝑖
𝐻𝑆

,�̂�𝑖
𝐻𝑆

[𝑦𝑖
𝐻𝑆

log �̂�𝑖
𝐻𝑆

+ (1 − 𝑦𝑖
𝐻𝑆

) log(1 − �̂�𝑖
𝐻𝑆

)] (2)

where �̂�𝑖
𝐻𝑆

and 𝑦𝑖
𝐻𝑆

denote the HS division prediction and the corresponding HS label of the 𝑖-th battery cell data, respectively.

After the HS division model is trained, it can categorize both the remaining training and test data into healthy and unhealthy 
states without the necessity for a predefined threshold value. By assimilating the feature distinctions between labeled healthy and 
unhealthy data during training, the model can discern degradation patterns across the entire dataset. Determining the FPC is crucial, 
marking the initial stages of Lithium-ion battery deterioration. However, identifying the FPC poses a challenge due to typically weaker 
degradation features during this phase compared to those in the labeled unhealthy state.

To identify the relevant FPC, we employ a straightforward continuous trigger mechanism. In this setup, the battery cell is classified 
as unhealthy when consecutively predicted as such by the HS division model for a defined number of instances. This trigger mechanism 
helps mitigate unnecessary oscillations and uncertainties in FPC determination, being a widely adopted strategy in HS division 
approaches [14,39]. In our study, the FPC is determined when the HS division model designates the input data as unhealthy for five 
consecutive instances, contributing to a more reliable indication of the FPC. To further improve the robustness of FPC determination, 
we incorporate additional measures within the continuous trigger mechanism. The pseudo-code for determining the FPC point is 
mentioned in Algorithm 1.

In particular, we introduce a temporal element to the trigger mechanism to ensure that the FPC is not identified too early in the 
battery’s life cycle. This added temporal constraint guards against prematurely labeling the battery as unhealthy, which could result 
in inaccurate RUL predictions.

Under this extended mechanism, the battery is considered to have reached its FPC only if the HS division model classifies it 
as unhealthy for five consecutive times and this classification occurs beyond a defined threshold cycle, which we refer to as the 
minimum cycle threshold (MCT). We selected the threshold value for consecutive prediction of the unhealthy stage as five to eliminate 
oscillations between healthy and unhealthy stage predictions and to pinpoint the FPC accurately. When calculating the FPC point for 
6

each battery, we observed that in most cases, no oscillation was present. However, to safeguard our model from potential random 
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Algorithm 1 FPC point prediction algorithm.

Input: Battery data 𝐷
Output: FPC point prediction 𝑝
1: Step 1: Data Preparation

2: Divide 𝐷 into training set 𝐷train and test set 𝐷test

3: for each battery 𝑏 in 𝐷 do

4: Annotate fixed windows of size 50 from the initial 10% of 𝑏 as Healthy

5: Annotate fixed windows of size 50 from the last 10% of 𝑏 as Unhealthy

6: end for

7: Step 2: Train the HS Division Model

8: Step 3: FPC Prediction

9: Input: Use the unannotated data (Remaining 80% from each battery in 𝐷train and 100% for each battery in 𝐷test)

10: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑢𝑛𝑡 ← 5
11: 𝐹𝑃𝐶_𝑝𝑜𝑖𝑛𝑡𝑠 ← []
12: for each battery 𝑏 in 𝐷 do

13: 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑐𝑜𝑢𝑛𝑡 ← 0
14: for each fixed window 𝑤 in 𝑏 do

15: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 ←𝑤𝑖𝑛𝑑𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 + 1
16: 𝐻𝑆 ←𝐻𝑆_𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛_𝑀𝑜𝑑𝑒𝑙(𝑤)
17: if 𝐻𝑆 == Unhealthy then

18: 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑐𝑜𝑢𝑛𝑡 ← 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑐𝑜𝑢𝑛𝑡 + 1
19: else

20: 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑐𝑜𝑢𝑛𝑡 ← 0
21: end if

22: if 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑐𝑜𝑢𝑛𝑡 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑢𝑛𝑡 then

23: 𝐹𝑃𝐶_𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝐹𝑃𝐶_𝑝𝑜𝑖𝑛𝑡𝑠 + [𝑤𝑖𝑛𝑑𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑢𝑛𝑡]
24: break

25: end if

26: end for

27: end for

28: return 𝐹𝑃𝐶_𝑝𝑜𝑖𝑛𝑡𝑠

oscillations. The MCT is a dynamic value calculated as a percentage of the total cycle count. By setting an MCT, we ensure that the 
FPC identification occurs after a certain proportion of the battery’s expected lifetime has elapsed, adding a temporal context to the 
determination process.

The introduction of this temporal constraint is crucial for several reasons. First, it aligns with the practical reality that the FPC 
often occurs after a certain number of cycles, rather than immediately. Second, it prevents premature FPC identification, which can 
be especially beneficial in cases where initial battery cycles exhibit varying degrees of degradation before stabilizing. Finally, this 
temporal constraint enhances the adaptability of our framework to different battery types and operating conditions, as it accounts 
for variations in degradation behavior.

3.2. Remaining useful life prediction

In the stage of predicting RUL, our objective is to estimate the RUL percentage after the FPC. For this purpose, we introduce the ST-

MAN architecture, a novel design adept at capturing intricate degradation patterns while maintaining computational efficiency. This 
architectural choice seeks a fine balance between effectiveness and computational resources, presenting a lightweight yet powerful 
model for deep learning in RUL prediction.

To effectively train our RUL prediction model, our approach utilizes time-series data by applying sliding windows from the FPC 
to the EOL as inputs, while the RUL percentage serves as the ground truth for training. Since the precise RUL information is generally 
unavailable in real-world scenarios, we calculate the RUL percentage label after the FPC as follows.

𝑦𝐿
𝑖
𝑗
= EOL𝑖 − 𝑗

EOL𝑖 − FPC𝑖
(3)

where 𝑦𝐿𝑖
𝑗

represents the RUL label of 𝑥𝑖
𝑗

post FPC, while EOL𝑖 and FPC𝑖 denote the EOL and FPC of the 𝑖-th battery cell, respectively. 
This formulation allows us to express the RUL as a percentage, providing a more practical and interpretable measure of battery health.

Our approach fundamentally differs from conventional approaches that rely exclusively on discharge capacity as a health indicator 
and predict discharge capacity values as RUL estimates. Recognizing the tendency of discharge capacity values to exhibit sudden drops, 
making accurate RUL predictions challenging, we define RUL as a linear percentage. This approach considers the period from FPC to 
EOL, enabling the prediction of remaining life cycles from the testing cycle, given its linear relationship with the period from FPC to 
the cycle point and the remaining life cycles from the cycle point to EOL.

The proposed ST-MAN architecture is depicted in Fig. 4, along with its detailed layer-wise description in Table 3. This architecture 
is specifically tailored to the unique characteristics of our battery degradation data, which is inherently multimodal and temporally 
7

dependent. We start by applying convolutional operations to the input data 𝑥𝑖
𝑗
∈ℝ𝑛𝑓×𝑛𝑤 , which represents battery degradation data 
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Fig. 4. The architecture overview of the proposed spatial-temporal multimodal attention networks (ST-MAN). The network consists of convolutional operations, a 
cross-channel Transformer encoder block, a fully connected layer to fuse cross-channel information, an LSTM module to extract temporal information, and a temporal 
attention module to improve the temporal information extraction.

Table 3

The details of the proposed ST-MAN network architecture for training on example MIT dataset [34].

Network Layers Description Activation Output

Individual 
Convolu-

tion Sublet

Input (7x50) - -

Reshape - - 1x7x50

Permute - - 1x50x7

Conv2d CNN (input = 1, output = 20, kernel size = (5,1), stride = (1, 1) ) ReLU 20x46x7

Conv2d CNN (input = 20, output = 20, kernel size = (5,1), stride = (2, 1) ) ReLU 20x 21x 7

Conv2d CNN (input = 20, output = 20, kernel size = (5,1), stride = (1, 1) ) ReLU 20x17x7

Conv2d CNN (input =20, output = 20, kernel size = (5,1), stride = (2, 1) ) ReLU 20x7x7

Channel Interaction SelfAttention Query(20,20), Key(20,20), Value(20,20) Sigmoid 7x20x7

Channel 
Fusion

FC Linear(140,40) - 7x40

Dropout Dropout(0.1) - 7x40

Temporal Fusion LSTM LSTM( input = 40, hidden size = 40) Tanh 7x40

Temporal 
Fusion

FC Linear(40,40) Tanh 40

FC Linear(40,1) Softmax 1

Prediction FC Linear(40,1) - 1

with different features 𝑛𝑓 using a sliding window of length 𝑛𝑤. Importantly, we treat each channel individually during this process to 
emphasize local context and account for the distinct contributions of each channel. To understand the relationships between different 
channels and determine the relative importance of each channel, we employ a transformer encoder block. This block enables the 
model to learn interactions between channels and their significance in the overall degradation process. The relative importance 
calculated by the transformer is then added back into the previous input data.

After learning channel interactions, we proceed to fuse the channel information using an FC layer. Unlike the self-attention 
mechanism, the FC layer allows different features within the same sensor channel to have varying weights, enhancing the feature 
fusion and capturing the unique contributions of each. To model temporal dependencies across the sequence of data, we utilize LSTM 
units. These units enable the network to understand the global temporal relationships between different time steps within the input 
window. Considering that not all time steps contribute equally to RUL prediction, it is vital to assess the importance of features at 
each time step in the sequence. To achieve this, we generate a global contextual representation through a weighted average sum of 
hidden states at each time step. These weights are determined by a temporal self-attention layer. Since the feature at the last time step 
represents the entire sequence, the resulting global representation is reintegrated into the previous feature. We introduce a trainable 
multiplier parameter for the global representation, affording the model flexibility in deciding whether to utilize or disregard the 
generated global representation. Finally, an FC layer is applied to the represented feature to obtain the final RUL output.

To train the RUL prediction model effectively, we define the RUL prediction loss, which measures the difference between the 
predicting RUL and the corresponding RUL labels as a percentage.
8

𝐿𝑅𝑈𝐿 =𝐿𝑀𝐴𝐸 +𝐿𝑅𝑀𝑆𝐸 +𝐿𝑀𝐴𝑃𝐸 (4)
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Fig. 5. Discharge capacity degradation patterns of (a) 124 Lithium-ion battery cells from the MIT dataset [34], (b) 77 Lithium-ion battery cells from HUST dataset 
[21].

𝐿𝑀𝐴𝐸 = 1
EOL𝑖 − FPC𝑖
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𝑗
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𝑖
𝑗
| (5)
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where 𝑦𝐿𝑖
𝑗

and 𝑦𝐿𝑖
𝑗

represent the corresponding RUL label and RUL prediction of the 𝑖-th battery cell data, respectively. 𝐿𝑀𝐴𝐸 denotes 
the mean absolute error (MAE) between the predicting RUL and the corresponding RUL labels, 𝐿𝑅𝑀𝑆𝐸 is root mean square error 
(RMSE), 𝐿𝑀𝐴𝑃𝐸 is mean absolute percentage error (MAPE), and the final RUL prediction loss is the sum of the MAE, RMSE, and MAPE. 
This comprehensive loss function ensures that the model learns to make precise predictions while considering both the magnitude and 
relative importance of prediction errors. Combining MAE, RMSE, and MAPE into a composite loss function offers a comprehensive 
evaluation of prediction accuracy, considering error magnitude, relative errors, and sensitivity to outliers. This approach ensures a 
balanced assessment, robustness to individual metric idiosyncrasies, and simplicity in interpretation, providing a holistic evaluation 
of model performance across various error dimensions. By incorporating these architectural elements and the corresponding loss 
functions, our proposed ST-MAN architecture is equipped to effectively capture and learn from the complex degradation patterns 
exhibited by Lithium-ion batteries, leading to accurate and robust RUL predictions.

4. Experimental results

4.1. Datasets

To evaluate the proposed framework on the real battery cell degradation data, we used two different datasets: the MIT dataset 
[34] and the HUST dataset [21]. While the MIT dataset is widely recognized in the field, the HUST dataset represents one of the 
latest additions, offering valuable battery discharge data. The MIT dataset is the product of a collaborative effort between the Toyota 
Research Institute, Stanford, and MIT [34]. This dataset comprises 124 commercial lithium-ion battery cells, specifically the A123 
Systems model APR18650M1A, boasting a nominal capacity of 1.1 Ah. These batteries were subjected to rigorous cycling under 
fast-charging conditions. The experimentation involved cycling the batteries within horizontal cylindrical fixtures using a 48-channel 
Arbin LBT potentiostat, all within a controlled forced convection temperature chamber maintained at 30 ◦𝐶 . The key specifications of 
the cells in this dataset include a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V. Charging was executed following either 
a one-step or two-step fast-charging policy, denoted as ‘C1(Q1)-C2’. Here, C1 and C2 represent the initial and subsequent constant-

current steps, while Q1 signifies the state-of-charge (SOC, %) at which the current transitions between the two steps. Following 
this, charging at 1C CC-CV ensued, concluding at 80% SOC, which is EOL. The upper and lower cutoff potentials adhere to the 
manufacturer’s specifications at 3.6 V and 2.0 V, respectively. The dataset spans a wide range of cycle lives, varying from 150 to 2,300 
cycles, with an average of approximately 810 cycles and a standard deviation of 340. Each cycle corresponds to a complete battery 
discharge and recharge. This rich dataset comprises crucial parameters, including cycle number, internal resistance, temperature 
statistics (minimum, average, maximum), and charge and discharge capacities. In Fig. 5 (a), we present a visualization of the discharge 
9

capacities of the 124 cells, demonstrating the significant variability in cycle numbers among the lithium-ion batteries.
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Fig. 6. The conventional RUL prediction scheme with input and output on the same battery cell.

The HUST dataset [21] is provided by the Huazhong University of Science and Technology and involves 77 commercial batteries 
subjected to over 140,000 charge-discharge cycles. These batteries, all LFP/graphite A123 APR18650M1A with a nominal capacity 
of 1.1 Ah and a nominal voltage of 3.3 V, undergo testing with various multi-stage discharge protocols. However, they follow an 
identical fast-charging protocol in two thermostatic chambers at 30 ◦𝐶 . The number of cycles ranges from 1,100 to 2,700 cycles, with 
an average of 1,898 and a standard deviation of 387, each representing information about discharge capacity, charge capacity, and 
charge voltage. Ma et al. [21] claim that this is the largest dataset for diverse protocols. Moreover, we used the feature generation 
mechanism used in [21] to generate two additional features, where the difference of the charge voltage and charge capacity curve 
between each cycle and the 10th cycle is taken into account, making a total of 5 features for each cycle. The high performance 
of differences in charge capacity features and voltage capacity features are inspired by Severson et al. [34] and Jiang et al. [11], 
respectively. As illustrated in Fig. 5 (b), the discharge capacity for all 77 cells in the HUST dataset exhibits diverse patterns. Notably, 
the distinct properties of both datasets make them valuable resources for conducting experiments and analyzing results, thereby 
contributing to the development of robust solutions for RUL prediction tasks.

4.2. Implementation details and evaluation metrics

The experiments were carried out using Python scripts within the PyTorch framework. The models were optimized using the Adam 
optimizer with a learning rate of 0.0001, 𝛽1 at 0.9, and 𝛽2 at 0.99. The training process involved a batch size of 8, running for 100 
epochs with early stopping, implemented with a patience of 20 epochs to mitigate overfitting.

To demonstrate the advantage of our proposed framework, we conducted comparisons with established models, specifically the 
Temporal Convolutional Network (TCN) [57] and ADLSTM [42]. These conventional methods traditionally rely on discharge capacity 
as the sole input and presume prior knowledge of the EOL. The RUL prediction scheme for conventional methods, as illustrated in 
Fig. 6, employs 40% of the battery cell data as input, predicting the remaining 60% as output. To address variations in cycle numbers 
across datasets, padding was implemented to align input and output sizes. For example, on the MIT dataset, the input and output 
sizes were set at 894 and 1342, respectively, while for the HUST dataset, sizes of 1072 and 1608 were utilized.

Additionally, we compare the proposed ST-MAN with the TCN and ADLSTM, all using our two-stage RUL prediction scheme and 
the same number of input features. These experiments highlight the effectiveness of the ST-MAN architecture for RUL prediction.

In the initial stage of our framework, the goal is to predict the HS of the battery cell at various cycle points and identify the FPC. 
In our experiments, we labeled the first 10% of the total cycle data for each cell as the healthy state and the last 10% as the unhealthy 
state, leaving the remaining 80% for FPC prediction. To mitigate overfitting, we performed 5-fold cross-validation. For instance, on 
the MIT dataset, 99-100 battery cell data were used for the training dataset, and 24-25 battery cell data for the test dataset, iteratively 
changing the training and test dataset split to include all cells in the test dataset. To pass input of uniform size we use the fixed sliding 
window of size 50 to train the HS classification model and the RUL prediction model. For training the HS classification model in 
Stage 1 we show the number of cycles labeled as healthy (initial 10%) and unhealthy (last 10%) in Table 2.

Moreover, we use 7 and 5 input features from the MIT and HUST datasets, respectively. The input features of the MIT dataset 
include discharge capacity, internal resistance, charge capacity, average temperature, minimum and maximum temperature, and 
charge time. The HUST dataset input features comprise charge voltage, discharge capacity, charge capacity, the difference of the 
charge voltage between each cycle and the 10th cycle (Δ𝑉𝑖−10 = 𝑉𝑖 − 𝑉10), and the difference of the charge capacity between each 
cycle and the 10th cycle (Δ𝑄𝑖−10 =𝑄𝑖 −𝑄10).

For the evaluation and comparison of the proposed framework with conventional methods, three evaluation metrics—MAE, MSE, 
10

and MAPE—were employed, defined as follows:
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Fig. 7. Illustration of first predicted cycle (FPC) decisions based on seven features for three battery cells from the MIT dataset: Discharge capacity, internal resistance, 
charge capacity, average temperature, minimum and maximum temperature, and charge time. The cells depicted are numbered First 101, Second 102, Third 103.
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where �̂�𝑖 represents the predicted RUL percentage and 𝑦𝑖 represents the ground truth. These evaluation metrics allow us to quantita-

tively assess the accuracy and performance of our models in predicting remaining useful life.

4.3. Results and discussion

In Fig. 7, instances of the health state (HS) division outcomes from the initial stage of our proposed scheme are demonstrated 
using the MIT dataset. The results illustrate a distinct classification between the healthy and unhealthy states. Significantly, the 
identification of FPCs occurred at precise junctures corresponding to the onset of degradation in both discharge and charge capacity 
values. To provide further insight into the FPC determination process, we include the percentage of discharge capacity at the FPC point 
for both datasets in Table 4. This percentage represents the proportion of remaining discharge capacity when the FPC occurs. For the 
MIT dataset, on average, the FPCs were identified at approximately 94% of the total discharge capacity, while for the HUST dataset, 
they occurred at roughly 90% of the total discharge capacity. This consistent trend across both datasets demonstrates the robustness 
and stability of our proposed first-stage approach in pinpointing the FPCs accurately. These findings reinforce the reliability of our 
11

method in identifying the critical transition points within battery degradation cycles, which is paramount for precise remaining useful 
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Fig. 8. Discharge Capacities for MIT [34] dataset before and after the FPC.

Table 4

Percentage of Discharge Capacity at FPC.

Dataset Train Test

MIT [34] 94.70 94.34

HUST [21] 90.771 86.69

Table 5

Evaluation of RUL prediction on the MIT and HUST datasets.

Methods MIT [34] HUST [21]

MAE MSE MAPE MAE MSE MAPE

TCN [57] 0.0451 ± 0.0091 0.0065 ± 0.0046 0.1308 ± 0.0360 0.0226 ± 0.0081 0.0014 ± 0.0015 0.0776 ± 0.0237

ADLSTM [42] 0.0461 ± 0.0146 0.0072 ± 0.0067 0.1149 ± 0.0477 0.0237 ± 0.0030 0.0006 ± 0.0002 0.0834 ± 0.0148

ST-MAN (Ours) 0.0275 ± 0.0046 0.0014 ± 0.0005 0.0494 ± 0.0100 0.0168 ± 0.0091 0.0005 ± 0.0006 0.0384 ± 0.0193

Two-stage TCN 0.1034 ± 0.0110 0.0160 ± 0.0027 0.1462 ± 0.0172 0.0939 ± 0.0389 0.0139 ± 0.0093 0.1670 ± 0.0821

Two-stage LSTM 0.0293 ± 0.0043 0.0015 ± 0.0004 0.0544 ± 0.0077 0.0181 ± 0.0023 0.0006 ± 0.0001 0.0438 ± 0.0048

life prediction. Furthermore, the discharge capacity curves before and after the FPC point in the MIT [34] dataset can be visualized 
in Fig. 8, where the discharge capacity is relatively stable before the FPC point as compared to the discharge capacity after the FPC 
point.

In Fig. 9, we present a visual comparison of the RUL prediction results achieved by our proposed two-stage framework and 
conventional schemes [57,42]. It is worth noting that there is a fundamental difference in how RUL percentage prediction commences 
between the proposed method and conventional approaches, as depicted in Fig. 9. Specifically, our proposed method initiates RUL 
percentage prediction after the FPC point, which signifies the starting point of battery degradation. Conversely, conventional methods 
base their predictions on data covering the first 40% of the overall cycle, making the initial prediction points distinctly dissimilar.

This disparity in prediction starting points has profound implications for the accuracy of RUL predictions. In the case of conven-

tional methods, which necessitate prior knowledge of the EOL, the predicted RUL exhibits noticeable gaps when compared to the 
ground truth. Moreover, conventional models struggle to accurately anticipate sudden drops in RUL, often leading to discontinuous 
predictions. In contrast, our proposed method excels in producing smooth and stable RUL predictions. By commencing RUL estimation 
after the FPC point, our approach circumvents the need for prior knowledge of the EOL, resulting in more reliable and continuous 
predictions. This is particularly beneficial in real-world scenarios where exact EOL information may not be readily available.

For a comprehensive evaluation of the RUL prediction models, we provide a detailed comparison in Table 5, utilizing three 
prominent evaluation metrics. Notably, our proposed method consistently outperforms the two conventional methods across all these 
metrics. This superior performance underscores the effectiveness of our approach in accurately predicting RUL, all while obviating 
the need for prior knowledge of the EOL. These results highlight the potential of our two-stage framework in enhancing the precision 
of RUL prediction in various real-world applications.

Furthermore, we compare the proposed ST-MAN with the TCN and LSTM, all employing our two-stage RUL prediction scheme 
and the same number of input features. Fig. 10 demonstrates examples of the RUL prediction results on the MIT and HUST datasets 
by the proposed ST-MAN, two-stage TCN, and two-stage LSTM. Compared to the results obtained by conventional schemes in Fig. 9, 
12

the proposed scheme improved the performance of the RUL prediction by the TCN and LSTM models. In Table 5, the proposed ST-
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Fig. 9. RUL percentage prediction, First two rows show RUL prediction on batteries 51 and 56 of MIT dataset, last two rows show RUL prediction on batteries 51 and 
56 on HUST dataset.

Table 6

Comparison of computation complexity and the 
number of parameters.

Model FLOPs Parameters

TCN [57] 527,424 46,049

ADLSTM [42] 1,003,648 190,721

ST-MAN (Ours) 1,200,869 27,861

MAN also outperformed the two-stage TCN and two-stage LSTM. These experiments demonstrate the effectiveness of the ST-MAN 
architecture for RUL prediction and its potential to outperform conventional and alternative deep learning models in this critical 
task.

In Table 6, we present a comprehensive overview of the computational complexities and performance metrics associated with the 
proposed method compared to the TCN and LSTM models when employing the two-stage RUL prediction scheme on the MIT dataset. 
Our assessment of computational costs encompasses both the number of network parameters and floating-point operations (FLOPs), 
a metric widely used to represent the execution time and overall computational complexity of neural network models [12].

Remarkably, as illustrated in Table 6, our proposed network architecture shows the smallest number of parameters. However, 
it is noteworthy that the FLOPs associated with the proposed ST-MAN model are relatively larger compared to the TCN and LSTM 
models. This signifies that our ST-MAN model exhibits a higher computational demand during execution. Nevertheless, the smaller 
13

number of weight parameters, despite the increased FLOPs, underscores the model’s efficiency and demonstrates that it can achieve 
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Fig. 10. RUL percentage prediction, first two rows show RUL prediction on batteries 8 and 18 of HUST dataset, last two rows show RUL prediction on batteries 8 and 
18 on MIT dataset.

Table 7

Ablation Study for HS Division Model by changing the number layers and the number of LSTM blocks in the model.

Hidden Layers in each block No of LSTM Blocks

1 2

MIT HUST MIT HUST

Params Train Test Params Train Test Params Train Test Params Train Test

1 65,457 94.6 93.5 52,657 90.1 83.9 85,857 94.5 93.4 73108 92.2 85.6

2 85,857 94.8 94.1 73,057 92.3 85.7 126,657 96.4 96.6 113908 92.4 85.8

3 106,257 96.8 98.4 93,457 91.8 85.7 167,457 96.2 98.6 154708 91.4 85.7

4 126,657 96.8 98.42 113,857 92.4 85.8 208,257 95.4 95.8 195508 91.3 86.8

robust predictive performance with a leaner set of learnable parameters. This balance between FLOPs and parameters demonstrates 
the capability of the model to deliver favorable results while maintaining computational efficiency.

4.4. Ablation study

In this section we discuss the ablation study performed to select the best set of parameters for our proposed model. Table 7

investigates the number of parameters required to train the HS Division Classifier for FPC prediction using various hyperparameters. 
Based on this analysis, we have chosen our HS classifier to consist of 1 LSTM block with 3 hidden layers inside it. This configuration 
strikes a balance between early FPC detection and the number of parameters, optimizing the performance of our model.

Table 8 shows how the RUL prediction performance is impacted after removing certain blocks from the proposed architecture. It 
can be easily observed that removing any of the subsections in the proposed model provided inferior performance in the performance 
14

metrics compared to the complete.
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Table 8

Ablation study of ST-MAN architecture.

Methods MIT [34] HUST [21]

MAE MSE MAPE MAE MSE MAPE

Without Initial Convnet 0.1646 ± 0.0115 0.0396 ± 0.0060 0.3180 ± 0.02691 0.2255 ± 0.0235 0.0727 ± 0.0191 0.4329 ± 0.02857

Without Channel Interaction 0.0500 ± 0.0147 0.0046 ± 0.0046 0.1043 ± 0.0314 0.0471 ± 0.0511 0.0074 ± 0.0132 0.0954 ± 0.1123

Without Temporal LSTM 0.0358 ± 0.00542 0.0024 ± 0.0008 0.0728 ± 0.0116 0.0176 ± 0.0042 0.0005 ± 0.0002 0.0331 ± 0.0072

ST-MAN (Ours) 0.0275 ± 0.0046 0.0014 ± 0.0005 0.0494 ± 0.0100 0.0168 ± 0.0091 0.0005 ± 0.0006 0.0384 ± 0.0193

5. Conclusion

In this study, we proposed a novel two-stage framework for RUL prediction of Lithium-ion batteries, addressing the critical 
challenge of RUL estimation in real-world scenarios where precise EOL information is often unavailable. Our proposed framework, 
which combines health state classification and RUL prediction, offers several key contributions and advantages. First, we introduced 
the concept of the FPC, which serves as a pivotal point to initiate RUL prediction. By identifying the FPC through health state 
classification, we effectively circumvent the need for prior knowledge of the EOL. This feature is particularly valuable in practical 
applications, where obtaining exact EOL information can be challenging or impossible. To achieve accurate health state classification 
and RUL prediction, we designed the ST-MAN, a novel architecture tailored to the unique characteristics of battery degradation 
data. ST-MAN contains CNNs, Transformer encoders, and LSTM units to capture intricate degradation patterns while maintaining 
computational efficiency. The use of multi-attention mechanisms and temporal self-attention enables ST-MAN to learn both local and 
global dependencies in the data, resulting in robust RUL predictions. Our experimental results demonstrate the effectiveness of the 
proposed framework and ST-MAN architecture. We compared our approach with conventional methods and alternative deep learning 
models, consistently achieving superior RUL prediction accuracy across multiple evaluation metrics. Notably, our method produces 
smooth and stable RUL predictions, addressing the challenges of discontinuity and inaccuracy associated with conventional methods.

Furthermore, for the integration of an embedded solution, it is necessary to refine our strategy with a focus on reducing FLOPs in 
future iterations. In this work, we propose a hierarchical method comprising two stages. In the first stage, the healthy and unhealthy 
stages of the battery are determined. Subsequently, the second stage is activated when the battery status is confirmed as unhealthy. 
Both stages utilize high-performance LSTM-based models, which are computationally expensive. To mitigate the computational bur-

den, it is recommended to revise the model architecture for the FPC detection (First stage) by transitioning to a CNN-based model, 
for example, employing knowledge distillation techniques. In the case of battery monitoring in embedded devices, only the first stage 
of our algorithm will be deployed. This decision is based on two main considerations: 1. When the battery of the embedded device is 
identified as unhealthy, the degradation of the device performance makes it an unreliable source for subsequent calculations, hence 
the second stage must be performed on an external device, such as the cloud. 2. By deploying only the first stage of our algorithm, 
the computational burden for the embedded device will be considerably alleviated, thereby improving its operational efficiency and 
resource utilization.

Future work may involve further refinement of the framework, exploration of additional datasets, and deployment in real-world 
battery management systems. By advancing the field of battery health management and extending the lifespan of energy storage 
technologies, our research has the potential to revolutionize various industries, including the automotive and renewable energy 
sectors.
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