
Reliability Engineering and System Safety 252 (2024) 110451

A
0

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Remaining Useful Life prediction based on physics-informed data
augmentation
Martin Hervé de Beaulieu a, Mayank Shekhar Jha a,∗, Hugues Garnier a, Farid Cerbah b

a CRAN, CNRS UMR 7039, Université de Lorraine, 2 rue Jean Lamour, Vandoeuvre-les-Nancy, 54506, France
b Dassault Aviation, Scientific Studies Department, 1 Rue du Val d’Or, Saint-Cloud, 92552, France

A R T I C L E I N F O

Keywords:
Prognostics
System degradation
Deep learning
Health index
Predictive maintenance
Remaining useful life
System identification

A B S T R A C T

Current approaches for monitoring machine health (SOH) and effective prognostics depend on the extensive
use of complete degradation data trajectories, implying the reliance on data generation techniques that involve
functional degradation of the real system until the failure state is reached. These commonly adopted approaches
that depend on labeled target data remain operationally and economically nonviable for most industries and
safety critical systems. This paper presents novel approaches that alleviate the existing dependence of most
prognostics procedures on Remaining Useful Life (RUL) labeled data for training. To this end, firstly, a hybrid
data augmentation procedure is proposed that enables the integration of system knowledge available a priori
as well as physics of failure, within the training data. Secondly, an unsupervised Health Index (HI) extraction
approach is developed, followed by a long-term prediction of this same HI, that leads to an efficient prediction
of RUL without labeled data. Finally, a reliability-based assessment is performed to validate the proposed
approach. This comprehensive approach (i.e. integrating all the various stages involved in achieving a RUL
prediction based on unlabeled data) is tested on a real industrial aircraft system demonstrating the effectiveness
of the proposed approach in real industrial context.
1. Introduction

The purpose of maintenance in an industrial context is to ensure
maximum availability of the equipment at the highest possible level of
operation with reduced maintenance costs [1]. The integration of nu-
merous and diversified sensors [2], as well as the exponential increase
in data storage means in recent years, raises the possibility of transi-
tioning from traditional maintenance using expertise-based diagnosis
and fail-and-fix practices to data-based prediction and maintenance
methodology optimized to intervene at the best time on the monitored
system [3,4].

Prognostics is the process of assessing State of Health (SOH) of
a system and predicting its EOL, which includes the detection of an
incipient failure and the prediction of RUL [1]. Prognostics can target
either component or sub-component levels, involving the prediction
of a specific failure mode’s progression from its onset to component
failure [5,6]. The health index (HI) plays a key role in prognostics and
health management (PHM) by reflecting the true State of Health (SOH)
of the system and accurately describing the degradation process using
the inherent information of the condition monitoring signals [3,7]. HI
serves as an intermediate variable to predict the remaining useful life
(RUL) [8]. RUL represents the time remaining between the current
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instant 𝑡 and the End of Life (EOL) of the system [9]. Mathematically,
RUL can be expressed as:

𝑅𝑈𝐿(𝑡𝑘) = 𝑡𝐸𝑂𝐿 − 𝑡𝑘 (1)

where 𝑡𝐸𝑂𝐿 is the EOL instant and 𝑡𝑘 is the current time. Accurate
estimation of RUL is crucial for proactive maintenance planning [10],
accompanied by confidence intervals to account for the stochastic
nature of degradation [11]. Moreover, uncertainty quantification is
essential for risk-dependent maintenance decisions [12,13]. Prognostics
approaches are usually divided into two main classes of approaches
: physics-based approaches and data-driven approaches [3]. Physics
model-based approaches attempt to describe degradation processes by
constructing models based on existing physics laws and on the available
knowledge or observation of the degradation mechanism [14], calling
for availability of expert knowledge in the different scientific fields
related to the degradation of the observed system (mechanics, thermo-
dynamics, fluid physics, etc.) as well as an in-depth expertise about
the system itself. On the other hand, AI-based data-driven approaches
rely on highly complex computational models with coefficients that are
adjusted based on large number of observations [9,15–19]. The ad-
vancement in the domain of AI opens extensive possibilities especially
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Acronyms

AI Artificial Intelligence
CDF Cumulative Distribution Function
CNN Convolutional Neural Network
DCCN Dilated Causal Convolutional Network
EOL End of Life
FCL Fully Connected Layer
GAN Generative Adversarial Network
HI Health Index
IV Instrumental Variable
LSTM Long Short-Term Memory
MSE Mean Squared Error
NN Neural Network
PEM Prediction Error Method
PHM Pronostic and Health Management
PI Proportional Integral
PINNs Physics-Informed Neural Networks
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RUL Remaining Useful Life
SOH State of Health
SRIVC Simplified Refined Instrumental Variable

method for Continuous-time systems
TTF Time to Failure

for complex industrial systems for which physics or traditional statisti-
cal models turn out to be limited [20]. However, AI-based approaches
suffer from two major drawbacks:

1. Requirement for RUL-labeled data in training phase: Firstly, AI-
based approaches are highly data-intensive. Complex neural
models require huge amounts of data to be trained. Furthermore,
most of the AI-based approaches leverage RUL-labeled data
to perform direct mapping between sensor values and RUL in
a supervised manner. Such approaches include Convolutional
Neural Network (CNN) models [21,22], LSTM [23–26], attention
mechanism [27,28], and Dilated Causal Convolutional Network
(DCCN) [29–31], etc. However, in most of the real-life cases,
such labeled data are not available [32]. Indeed, obtaining
RUL-labeled data requires conducting experiments (accelerated
degradation tests) until the EOL of the system is reached, which
is time consuming, costly and often unrealistic in face of safety
critical industrial systems. Therefore, as most of the AI-based
existing approaches for prognostics rely heavily on the avail-
ability of labeled ground truth RUL data, the usefulness of such
approaches remains limited in the absence of such a ground truth
RUL in real cases.

2. Poor integration of a priori knowledge and physics: The second ma-
jor limitation of AI-based methods lies in their inability to incor-
porate a priori knowledge and physics. This a priori knowledge
could include information about the system architecture, partial
physical understanding (e.g., degradation models or physical
laws governing system components), observations of system be-
haviors, or feedback from maintenance actions. Additionally,
these methods lack the ability to provide a physical interpreta-
tion of their predictions. Moreover, because they operate outside
the traditional deterministic framework, similar to standard sta-
tistical approaches, assessing the reliability of these predictions
becomes challenging. Consequently, such methods are often un-
suitable for real industrial applications, where safety and se-
curity considerations necessitate the integration of available
knowledge into the models.
2

To deal with the two challenges mentioned above, several deep
learning approaches have emerged recently. Firstly, Physics-Informed
Neural Networks (PINNs), which belong to a hybrid class of Neural
Networks combining machine learning and physical laws can han-
dle the issues of lack of integration of prior knowledge. In recent
years, PINNs have gained significant attention due to their ability to
learn from limited data while respecting the fundamental principles of
physics [33]. Prior knowledge is incorporated within the data-driven
model, enabling improvement of model performance in the absence
of data, rendering model-interpretability. When the knowledge relies
more on some expertise about the system than on physics law, such an
approach is often referred to as ‘‘Knowledge-informed’’ or ‘‘Knowledge-
guided’’ [34]. The integration of knowledge can be divided into three
primary families [35,36]: within the training data, hypothesis set based,
and within the learning process.

• Within the training data: Here, the approach focuses on integra-
tion of explicit knowledge into the training data through simula-
tions [37]. These simulations, based on prior knowledge, are used
to train a model that assimilates the knowledge contained within
them. Such an approach can be referred to as physics-based data
augmentation [38].

• Hypothesis test based: Here, the main focus remains on constrain-
ing the search space of the machine-learning model by delimiting
it with a predefined hypothesis set based on conservative laws.
This ensures that the results of the AI-based model will adhere
to specific physical laws selected beforehand. These conserva-
tion laws can be embedded as linear equations in the Neural
Network (NN) through weighted connections between the input
layer and the first hidden layer, similar to a ‘‘pre-neural-network’’
concept [39,40].

• Within the learning process: In these approaches the focus re-
mains on integration of knowledge within the learning process
itself. The most common method is to add one or more external
physics-based (or knowledge-based) losses to the traditional loss
function of the learning algorithm [41]. The additional losses
act as regularizing constraints during the training, guiding the
network to a model that respects the desired knowledge/physics.
Such a loss has notably been implemented in Pronostic and Health
Management (PHM) applications using Weibull-law [42].

Such PINNs applied to PHM problems at system level can success-
fully handle RUL prediction and HI monitoring, however, integration
of reliability metrics within such approaches is not a trivial task.

Another way to cope with large data requirements is Generative Ad-
versarial Network (GAN). A GAN is a generative model that consists of
two neural network models: a ‘‘generator’’ and a ‘‘discriminator’’ [43].
Such models are efficient in creating new realistic data samples on
demand [44]. It can therefore be used to augment the amount of
data available in order to help training a RUL prediction algorithm
for instance. Special architectures of GAN, using notably Recurrent
Neural Network (RNN) such as LSTM, have proven to be effective in
generating realistic time series data [45]. Yet, such approaches are
black boxes; i.e., the models that govern the generated dynamics are
unknown and usually do not provide any guarantees regarding the
physical consistency of the data generated.

Traditional reliability approaches are pivotal in validating AI-based
methods by benchmarking them against established laws, bolstering
their trustworthiness. Despite their black-box nature, AI-based meth-
ods can demonstrate conformity to well-established reliability laws,
instilling confidence in their predictions. Reliability analysis involves
quantifying failure rates and probabilities to gain a comprehensive
understanding of the entire system fleet. Typically, estimating the
probability of failure 𝐹 (𝑡) or reliability 𝑅(𝑡) = 1−𝐹 (𝑡) involves observing
he end of life (EOL) of various systems within the population, often
odeled using the Weibull distribution [46]. Widely applied in relia-

ility engineering, the Weibull distribution accurately characterizes the
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probability density of failure in diverse fields, facilitating maintenance
planning, optimizing spare parts inventory, and resource allocation [47,
48]. The failure rate, which represents the instantaneous rate of failures
at a given time 𝑡, serves as a critical metric indicating the probability
of failure as time progresses. It can exhibit different patterns over time,
such as constant, increasing (wear-out failures), and decreasing (early-
life failures) rates, typically depicted in a bathtub curve [49]. However,
traditional reliability approaches primarily provide a fleet-level failure
rate 𝜆 and a failure probability 𝐹 (𝑡), lacking pre-EOL health behavior
estimates or detailed deterioration information for individual systems
within the fleet (as accomplished with prognostics based approaches).
Currently, there remains a wide gap between classical reliability-based
approaches that assess historical databases (fleet level information)
and prognostic-based maintenance approaches that focus on individual
systems/degradation trajectories.

To bridge these aforementioned scientific gaps and alleviate various
limitations, this work accomplishes the objective of generating RUL
predictions by overcoming the two aforementioned challenges (lack of
knowledge integration and requirements for large labeled data sets). To
that end, three main contributions are proposed:

1. Non-implication of RUL-labeled data in training phase: A com-
pletely unsupervised strategy is developed for extracting the
HI of the system, which avoids dependence on labeled data
completely. In a second phase, long-term prediction of the HI
makes it possible to obtain estimates of the RUL, again without
using labeled data.

2. Integration of a priori knowledge and physics: A physics-informed
data augmentation process (for both, healthy and degraded data)
approach based on system identification techniques is proposed
wherein injecting physical degradation models leads to gener-
ation of rich training data adhering to basic physics, leading
further to greater transparency and interpretability of the results
obtained.

3. Reliability-based assessment: A fleet-level reliability-based assess-
ment is performed using the well-established Weibull distribu-
tion thereby validating the compliance of proposed AI based
approach with the well-established laws of reliability.

As per the authors, there are currently no works that include, develop
or employ system-identification based approaches for prognostics (via.
data augmentation or otherwise). Moreover, for a closed loop system,
this is a considerable challenge. This work develops and deploys well
established system identification approach for efficient prognostics.

2. Proposed framework

The general overview of the proposed comprehensive framework is
summarized in Fig. 1. It is comprehensive in that the work addresses
all the essential steps involved in obtaining a RUL prediction from the
raw data collected in the system, in the absence of labeled data. The
proposed framework can be divided into three main steps which are
described in the following subsections.

2.1. Step 1 - Hybrid data augmentation

The first step consists of augmenting and enriching the data using
data-driven system identification [50–52] (Section 2.1). In this work,
two different data augmentation strategies are carried out. The first one
consists of augmenting the amount of nominal (i.e. healthy) data, and
enriching it (by offering new possibilities of set-point values, operat-
ing conditions, etc.), in order to train a neural network structure for
nominal signal reconstruction (Section 2.2). The second one consists of
designing a new distribution of data, by injecting realistic physics-based
degradation in the data-driven generated data previously obtained in
Section 2.1.1. Such degraded data will then be used to train a LSTM
3

neural structure that produces the future predictions of HI (Section 2.3).
2.1.1. Nominal data augmentation using data-driven system identification
The first stage of the proposed approach consists of increasing the

amount of nominal data in order to address the problem of the lack
of training data. To that end, system identification is used. System
identification consists of building mathematical models that describe
the behavior of a dynamic system based on observed data (includ-
ing observed data of limited size, which is particularly relevant in
the present case). There is a vast literature on system identification
methods [51–54]. Although most industrial systems are non-linear, it is
generally possible to assume the system to operate linearly around an
operating point, in order to use linear model identification methods.
Traditionally, an experiment adapted to the situation is designed in
order to acquire, from the considered system, input/output signals that
are sufficiently rich to be informative. The general data-driven system
identification workflow in open loop can therefore be summarized as
follows [52]:

1. Collect a sufficiently rich set of data from the system, removing
trends and outliers.

2. Choose a class of models on which the identification will be
carried out, in order to determine the model structure and the
number of parameters to be estimated. For most of the industrial
processes, linear low order model plus dead time is a sufficient
approximation.

3. Estimate the parameters of the selected model on the basis of
a chosen identification criterion. The standard approaches for
parameter estimation in the literature are the Prediction Error
Method (PEM) and the Instrumental Variable (IV) approach [50,
54,55].

4. Validate the model by assessing its performance on a validation
dataset and, if necessary, repeating one or more of the previous
stages to refine the result.

However, in most of the industrial scenarios, it is not possible to
establish such experimental designs. Instead, the historical data from
the operating processes must be leveraged. Moreover, most industrial
systems run under closed-loop conditions (i.e. under feedback con-
trol) [56], calling for prognostics based investigation under closed loop
conditions. Numerous closed-loop identification strategies have been
developed [52,57–59]. In these approaches, it is generally assumed
that the setpoint and/or the extra signal on the command will excite
the system to a sufficient level [57]. However, if this is not the case,
well-known identifiability issues may arise [60–62].

The standard block diagram of a process under feedback control is
displayed in Fig. 2 where:

• 𝐺 is the transfer function of the system to be identified
• 𝐶 is the transfer function of the controller
• 𝑟 is the reference (or setpoint)
• 𝑢 is the command
• 𝑟𝑢 is a possible extra-signal on the command 𝑢
• 𝑛 is the output noise or sensor noise
• 𝑦 is the output
• 𝜀 is the error (𝜀 = 𝑟 − 𝑦)

From the block diagram, the output can be expressed as:

𝑦 = 𝐺𝑢 + 𝑛 = 𝐺(𝐶(𝑟 − 𝑦) + 𝑟𝑢) + 𝑛 (2)

hence

(1 + 𝐶𝐺)𝑦 = 𝐺(𝐶𝑟 + 𝑟𝑢) + 𝑛 (3)

In a similar way, the command can be expressed as:

𝑢 = 𝐶(𝑟 − 𝐺𝑢 − 𝑛) + 𝑟𝑢 (4)

hence
(1 + 𝐶𝐺)𝑢 = 𝐶(𝑟 − 𝑛) + 𝑟𝑢 (5)
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Fig. 1. The proposed framework for RUL prediction without using measured degradation data.
Fig. 2. Standard block diagram of a closed-loop system.
he ratio of the output signal over the command signal leads to:

𝑦
𝑢
=

𝐶𝐺𝑟 + 𝐺𝑟𝑢 + 𝑛
𝐶𝑟 + 𝑟𝑢 − 𝐶𝑛

(6)

External signals must be rich enough to excite the system and
provide sufficient information [63]. Let us investigate the case where
𝑟𝑢 = 0, i.e. when no extra signal is added to the command. Then:

𝑢 = 𝐶(𝑟 − 𝑦) (7)

hence

𝑦 = 𝐶𝑟 − 𝑢
𝐶

(8)

Then, if the setpoint 𝑟 remains constant (or null), the equation becomes:

𝑦 = − 1
𝐶

× 𝑢 (9)

As a result, without external excitation, any identification method
will naturally estimate the inverse of the controller transfer func-
tion [62,64]. In the specific case of this study, it turns out that:

• The system operates in closed loop.
• Experiment design is not possible. Only a limited amount of data

from historical flights is available.
• Only a few and not sufficiently informative changes in the set-

point occur in the historical data (i.e., 𝑟𝑢 = 𝑟 = 0 for the most
part).

• The controller is not known and must be identified.

The data-driven system identification problem that is encountered
4

here can then be formulated as follows:
From the limited historical data available, determine linear models of
the controller 𝐶 and the process 𝐺 in order to approximate the dynamic
behavior of the feedback control loop, with the goal of generating additional
data and later incorporating additional degradation into the closed-loop
components.

As a consequence, a custom approach is developed to handle the
case study presented here. It is necessary to locate, in the available
data, two very specific situations in order to be able to identify 𝐶 and
𝐺 models [65]:

• A ‘‘manual mode’’, where the system could be considered as
operating in open loop, and the command signal 𝑢 is varied
enough to identify the model of the process 𝐺.

• An ‘‘automatic mode’’, where the system is controlled in closed
loop, the setpoint 𝑟 remaining constant. This is the case described
by Eq. (9), where the controller model 𝐶 can be deduced through
the identification of its inverse (see Fig. 3).

The proposed methodology therefore aims at handling these two
distinct cases in the following manner:

1. Locate historical data segments where the control is in ‘‘manual
mode’’ in order to identify the process model 𝐺 from ‘‘open-loop
data’’.

2. Find historical data segments in which the control is in ‘‘auto-
matic mode’’ in order to identify the inverse of the controller
model of 𝐶 from ‘‘closed-loop data’’.

3. Manually reproduce the effects of measurement noise.
4. Validate the closed-loop system model by verifying its ability to
replicate the general dynamical behavior across several flights.
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In the end, once the parameters of the various linear models gov-
rning the dynamic behavior of the different subsystems have been
etermined, it becomes possible to perform nominal data augmenta-
ion. To this end, new data samples corresponding to nominal operation
re obtained by simply specifying the evolution of the input set-point
rofile 𝑢, supplied to the closed-loop system model. This closed loop
odel consists of the combinations of estimated controller model 𝐶̂,

stimated process model 𝐺̂, and the noise generator. In this way, data
amples can be generated as required, simply by varying the duration
nd evolution profile of the set-point 𝑟.

.1.2. Physics-based degraded data augmentation
Having ensured the nominal data augmentation, the other aspect

nvolves enriching the data by integrating a degradation mechanism.
o that end, an additional physics-based model of a degradation mech-
nism is injected into a component sub-model of the global system
reviously identified using data-driven methods.

Functional degradation mechanisms across various domains exhibit
ertain characteristics such as irreversibility and monotonicity. For
nstance, the Arrhenius model is traditionally used for various non- me-
hanical failure mechanisms, mostly depending on chemical reactions,
iffusion processes or migration processes [66]. Paris’ law and Coffin-
anson model are typically applied to mechanical failure, material

atigue or material deformation, especially crack growth [67]. The
yring Model is used to describe changes in the rate of a chemical
eaction as a function of temperature or stress [68]. The exponential
ehavior of the failure evolution is common to all these degradation
odels. Add to this the fact that, in practice, similar exponential
egradation trends can be observed in most areas. Therefore, these
onclusions motivate the choice of a generic exponential degrada-
ion model, as had already been done in the design of the C-MAPSS
imulator [69].

By integrating the physics-based degradation model inside of the
ata-driven identified model of one selected component, a physics-
nformed data augmentation process is therefore obtained, allowing the
eneration of new unseen data samples incorporating a degradation
ased on a physics model.

.2. Step 2 - Unsupervised health index extraction

With the initial nominal operating data set enriched by the data
ugmentation process, a neural network-based model is trained to
xtract HI of the system studied from the multisensor data.

.2.1. Autoencoder structure
The autoencoder structure is trained to reconstruct nominal oper-

ting time-series, i.e., when the system is considered to be healthy.
he autoencoder therefore learns a basic representation of the nom-

nal healthy data distribution and its reconstruction with minimum
rror. Further, this nominal reconstruction model is used to reconstruct
omplete TTF time-series, including degraded operation of the system.
he reconstruction error, i.e. the difference between real signals and
econstructed signals is then computed to obtain a HI estimation.

Autoencoders have proven to be very efficient in extracting features
5

rom raw sensors data [70,71]. In particular, the features obtained from t
utoencoders have monotonicity and clear trendability characteristic
hat are essential for HI estimation.

Autoencoder architecture is developed for encoding an input 𝑥 into
compressed representation called ‘‘latent space’’, denoted as 𝑧, and

hen decoding it to try to reconstruct the original input [72]. The
ncoding function is denoted as 𝑧 = 𝑓𝜃𝑒 (𝑥) and the decoding function
̂ = 𝑔𝜃𝑑 (𝑧) so that the overall learning is accomplished by the nested
unction (10).

̂ = 𝑔𝜃𝑑 (𝑓𝜃𝑒 (𝑥)) (10)

The training is realized by minimizing the reconstruction error, which
is a function of 𝑥 and 𝑥, as defined in Eq. (11)

𝐽𝐴𝐸 (𝜃𝑒, 𝜃𝑑 ) =
∑

𝐿(𝑥, 𝑥) =
∑

𝐿(𝑥, 𝑔𝜃𝑑 (𝑓𝜃𝑒 (𝑥))) (11)

where 𝐿 is a loss function such as the Mean Squared Error (MSE).
Encoding and decoding functions can be achieved by using mul-

tiple FCL, with layers that decrease progressively in size to force the
computations flow through a bottleneck latent space. As the latent
space has a limited size, the network prioritizes learning the most
meaningful features that allow an accurate reconstruction of the input.
Autoencoders are an unsupervised learning method, since they do not
need any labeled data to train on. This is of key interest in the field
of prognostic analysis where labeled data are very rarely available
[73].

2.2.2. HI extraction using reconstruction error
A novel approach is developed in order to use the autoencoder

reconstruction error as a HI. During the training phase, the autoencoder
is trained with respect to nominal (i.e. healthy) data, thus learning the
nominal operating behavior of the system. Both real data samples (if
available) and simulated ones (obtained in the nominal data augmen-
tation phase described in Section 2.1.1) can be used. Thus, augmented
data are used as input data to train neural network models. The data
augmentation part helps to construct a training dataset large enough to
train complex deep learning models. Let us consider a nominal training
domain 𝐷𝑁 =

{

𝐗𝑖
𝑁
}𝑁𝑁
𝑖=1 where 𝑁𝑁 is the number of nominal training

samples. Each sample 𝐗𝑖
𝑁 belongs to a nominal feature space 𝑁 . 𝐗𝑖

𝑁
denotes a multivariate sequential data sample of length 𝑇𝑖 and with 𝑠
eatures (for instance, 𝐗𝑖

𝑁 can be a flight of total duration 𝑇𝑖 and with
collected signals, see Section 3).

The nominal training data samples 𝐱𝑖𝑁 are split into several win-
ows:

𝑖
𝑁 (𝑡𝑤) =

{

𝑋𝑖
𝑡𝑘

}𝑤+𝛥

𝑘=𝑤
(12)

here 𝑡𝑤 is the start timestep of the window and 𝛥 is its total duration.
arameters 𝜃𝑒 and 𝜃𝑑 of the encoder and decoder are learned on the
asis of the nominal training data, i.e. with respect to the nominal
eature space 𝑁 . To that end, the parameters are updated at each
raining iteration using the gradient of the reconstruction error (also
alled the loss):

(𝑡𝑤) =
‖

‖

‖

𝐗𝑖
𝑁 (𝑡𝑤) − 𝑔𝜃𝑑 (𝑓𝜃𝑒 (𝐗

𝑖
𝑁 (𝑡𝑤)))

‖

‖

‖

(13)

Once the training has been accomplished, the parameters 𝜃𝑒 and
𝑑 of the encoder and decoder are frozen. Let us now consider a TTF

rajectory that is being recorded on a running device (i.e. a real system
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Fig. 4. Comparison of two chained sequence-to-sequence predictions made with a simple LSTM network, one with overlapping and the other without. In both cases, 4 chained
predictions have been performed.
which, like all systems, is gradually deteriorating). In such a trajectory,
the data can be said nominal (i.e. in 𝑁 ) only at the very beginning
of the life of the device. Then, as system life progresses, the actual
feature space, including degradation, moves away from the nominal
feature space.

Therefore, considering a system that is deteriorating, a TTF tra-
jectory is denoted as 𝐗𝑖

𝐷 and belongs to a degraded feature space
𝐷.

As the nominal feature space and the degraded feature space are
different (𝑁 ≠ 𝐷), the associated probability distribution is also
different. More formally, the distribution of data samples belonging
to the degraded feature space drifts increasingly from the distribution
of nominal samples as the system approaches its failure (i.e its EOL)
(𝑃 (𝐗𝑖

𝑁 ) ≠ 𝑃 (𝐗𝑖
𝐷)). For each window of a TTF trajectory, the following

reconstruction error (scalar) is computed:

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡𝑤) =
𝑤+𝛥
∑

𝑘=𝑤

‖

‖

‖

𝐗𝑖
𝐷(𝑡𝑘) − 𝑔𝜃⋆𝑑 (𝑓𝜃⋆𝑒 (𝐗

𝑖
𝐷(𝑡𝑘)))

‖

‖

‖

(14)

Due to the distribution shift in 𝑃 (𝐗𝑖
𝐷), the reconstruction error

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡𝑤) continues to grow until the system completely fails (that is,
as 𝑤 approaches 𝑇𝑖). This time-varying and monotonically increasing
reconstruction error is used as an indicator of the SOH, namely as HI.
Since any system degrades, inducing a deviation in all or part of the
signals collected through the sensors arranged on the system, this HI
based on the reconstruction error will inevitably increase in correlation
with degradation.

2.3. Step 3 - HI long-term prediction for RUL estimation

Once a HI has been obtained for a portion of an aircraft’s life, it
must be forecast into the future to determine its evolution and thus
deduce the RUL. As a reminder, one of the aims of the proposed
approach is to avoid using RUL-labeled data. Consequently, the RUL
estimate is deduced from the HI prediction. Therefore, it is proposed to
perform long-term predictions of HI, until a predetermined threshold is
reached. Such long-term HI predictions then lead to RUL prediction. To
accomplish this task of time series prediction, RNN have been shown to
be very efficient. It is a particular type of neural networks that uses both
prior knowledge and current input to predict the output. An RNN can be
thought of as multiple recurrent standard cells whose states are affected
by both past states and current input. In addition, LSTM is a special
RNN cell that has been widely used for RUL prediction [23,74]. Time
series forecasts are generated using LSTM based sequence-to-sequence
prediction framework.
6

2.3.1. Sequence-to-sequence prediction
Sequence-to-sequence prediction consists of predicting an output

sequence given an input sequence [75].
[

𝑋𝑡𝑘=1 ,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡

]

↦
[

𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+1
,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+𝛥𝑝𝑟𝑒𝑑

]

(15)

where 𝛥𝑖𝑛𝑝𝑢𝑡 is the length of the input sequence and 𝛥𝑝𝑟𝑒𝑑 is the length
of the predicted output sequence.

In order to make longer-term predictions, it is possible to extend the
process, reusing the sequence previously predicted to generate future
predictions [76,77].

[

𝑋𝑡𝑘=1 ,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡

]

↦
[

𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+1
,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+𝛥𝑝𝑟𝑒𝑑

]

[

𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+1
,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+𝛥𝑝𝑟𝑒𝑑

]

↦
[

𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+𝛥𝑝𝑟𝑒𝑑+1
,… , 𝑋𝑡𝑘=𝛥𝑖𝑛𝑝𝑢𝑡+2𝛥𝑝𝑟𝑒𝑑

]

etc.

(16)

However, when such chain predictions are made, discontinuities
between the windows are often observed experimentally. To prevent
the latter, this work proposes to enhance the degree of correlation
between the input sequence and the output sequence by applying an
overlapping between them. To illustrate this, Fig. 4 shows two chain
predictions, one without overlapping (i.e. 𝛿 = 0) and the other with
(𝛿 = 10). In the first case (Fig. 4(a)) discontinuities appear between
the predicted windows, affecting the quality of the prediction. In the
other case (Fig. 4(b)), the effective prediction length is the same as
in the previous case, but overlapping is introduced. As a result, the
discontinuities that had appeared in the first case have been signifi-
cantly smoothed out, resulting in a better prediction. The choice of
hyperparameters 𝛥𝑖𝑛𝑝𝑢𝑡, 𝛥𝑝𝑟𝑒𝑑 and 𝛿 has to be done on an empirical basis,
according to the specific situation. A special study of the influence
of these hyperparameters is conducted for the Dassault Aviation case
study in Section 3.3.

2.3.2. Stacked-LSTM structure
For the HI sequence-to-sequence prediction task, a stacked-LSTM

architecture is proposed [78]. It takes as input a sequence of HI values,
and generates as output: a sequence of future HI values (prediction).

ℎ𝑙𝑡𝑘 is the hidden state computed by the 𝑙-layer of a stacked-LSTM
architecture at timestep 𝑡𝑘. The hidden states of the 𝑙-layer serve as
input to the deeper (𝑙 + 1) layer.

The specific feature of the structure proposed here is that, at the
output of the last LSTM layer of the network, the entire set of hidden
states ℎ𝐿 to ℎ𝐿 are concatenated and vectorized, to be supplied to
1 𝛥𝑖𝑛𝑝𝑢𝑡



Reliability Engineering and System Safety 252 (2024) 110451M. Hervé de Beaulieu et al.

d

Fig. 5. Structure of a three-layered stacked-LSTM network. Here, 𝐿 = 3 and ℎ𝑙
𝑡𝑘

(respectively 𝑐𝑙𝑡𝑘 ) refers to the hidden state (respectively the cell state) of layer 𝑙 at timestep 𝑡𝑘.
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a network of FCL that in turn, lead to a predicted time window of
the desired size. This process ensures extensive use of all temporal
information from the start to the end of the input sequence.

The training of this stacked-LSTM structure is done in a supervised
manner. As such, a training dataset comprises complete HI time series
(up to failure, that is, TTF trajectories), obtained from the degraded
data augmentation process described in Section 2.1.2.

2.3.3. RUL prediction based on threshold overshooting
The final objective is to obtain an estimate of the RUL, but without

using RUL-labeled data. To do this, a HI sequence-to-sequence pre-
diction is performed using the stacked-LSTM structure presented in
Section 2.3.2. The prediction is generated in sequential or chained fash-
ion (i.e., by reusing previously predicted windows) until a threshold is
reached [76], corresponding to the EOL. At this point, the RUL can be
recursively deduced by counting the time-steps covered. This strategy
is depicted in Fig. 6.

The detailed RUL estimation algorithm based on the prediction of
long-term HI until reaching an EOL threshold can be found in Algorithm
1.

Algorithm 1: RUL prediction process using HI sequential pre-
iction threshold overshooting strategy.

Input: A HI window of length 𝛥𝑖𝑛𝑝𝑢𝑡 ∶ 𝐇𝐈(𝑡𝑤) =
{

HI𝑡𝑘
}𝑤+𝛥𝑖𝑛𝑝𝑢𝑡

𝑘=𝑤
.

Output: A RUL value (scalar).
𝑞 = 0;
𝐇𝐈(𝑡𝑤+𝛥𝑖𝑛𝑝𝑢𝑡−𝛿) ← ℎ𝛩(𝐇𝐈(𝑡𝑤)) where ℎ𝛩 can be any NN-based
approximation model parameterized by 𝛩 (here, it is the
stacked-LSTM network presented in Fig. 5);
while 𝑚𝑎𝑥(𝐇𝐈(𝑡𝑤+𝛥𝑖𝑛𝑝𝑢𝑡−𝛿)) < EOL𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

𝑞 ← 𝑞 + 1;
𝐇𝐈(𝑡𝑤+𝛥𝑖𝑛𝑝𝑢𝑡−𝛿+𝛥𝑝𝑟𝑒𝑑 ) ← ℎ𝛩(𝐇𝐈(𝑡𝑤+𝛥𝑖𝑛𝑝𝑢𝑡−𝛿)) (next predicted
window from previous predicted window);

end
RUL = 𝛥𝑖𝑛𝑝𝑢𝑡 + (𝑞 − 1) × (𝛥𝑝𝑟𝑒𝑑 − 𝛿) + (𝛥𝐸𝑂𝐿 − 𝛿);

2.3.4. Reliability-based assessment of the AI-based approach
Finally, a reliability-based evaluation procedure is proposed to pro-

vide an assessment of RUL predictions against the well established
7

reliability laws. The objective is to show that despite the black-box
nature of the approaches, they are consistent with established reliability
laws. Considering a fleet of systems whose failure probability follows
a two-parameter Weibull distribution, with the failure rate defined
as [46]:

𝜆(𝑡) =
𝛽
𝛼
( 𝑡
𝛼
)𝛽−1 (17)

with 𝛽, 𝛼, 𝑡 > 0.
The failure probability (Weibull Cumulative Distribution Function

(CDF)) is expressed as [79]:

𝐹 (𝑡) = 1 − 𝑒−(
𝑡
𝛼 )

𝛽
(18)

𝛽 is called the shape parameter while 𝛼 is the scale parameter, influ-
encing both mean and spread of distribution.

To that end, a set of TTF trajectories are generated using the data-
augmentation process (Step 1, presented in Section 2.1), with respect to
a pre-selected Weibull distribution 𝐹𝑟𝑒𝑓 (𝑡). Then, these trajectories are
tested through the autoencoder, already trained (see Step 2 described
in Section 2.2), to obtain a HI trajectory. From the HI trajectories,
sequence-to-sequence predictions of future HI values are performed
(Step 3 described in Section 2.3) that leads to RUL predictions. The EOL
instants can then be retrieved, thus allowing to identify the parameters
of the Weibull distribution obtained from RUL predictions 𝐹𝑝𝑟𝑒𝑑 (𝑡).

The Kolmogorov–Smirnov test [80], which has been designed to
ompare a sample with a reference probability distribution, is applied
o ensure that the probability of failure 𝐹𝑝𝑟𝑒𝑑 (𝑡) obtained from the RUL
redictions follows the pre-selected distribution 𝐹𝑟𝑒𝑓 (𝑡).

. Application results to a real-life industrial use case

The proposed approach has been tested in a real industrial setting
n collaboration with Dassault Aviation, focusing on a commercial
usiness jet’s air distribution system within the cockpit. This system
egulates cockpit temperature by collecting hot air from the engines
approximately 200 ◦C), cooling it, and directing it into the cockpit
hrough a valve. Data for the study was collected during test flights
onducted during the development phase, aimed at testing various
n-board systems, rather than commercial flights.

The three stages outlined in Section 2 are applied to assess the
ffectiveness of the global approach.
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Fig. 6. Overall view of the threshold overshooting strategy. 𝑞 windows of length 𝛥𝑝𝑟𝑒𝑑 are predicted, until the EOL threshold is reached. RUL value is then deduced by counting
the timesteps covered between the start point and the EOL. 𝛥𝑖𝑛𝑝𝑢𝑡 and 𝛥𝑜𝑢𝑡𝑝𝑢𝑡 are the length of the input and output sequences, 𝛿 is the overlapping and 𝛥𝐸𝑂𝐿 is the length of the
partial last predicted window, which is cut off at the time-step where the EOL threshold is attained.
Fig. 7. Block diagram of the air distribution system in the cockpit. The controller 𝐶 is driven by the error 𝜀, obtained by subtracting the measured temperature 𝑦𝑚 from the
temperature setpoint 𝑟. The measured temperature 𝑦𝑚 is the true system output 𝑦 corrupted by noise 𝑛. The command 𝑢 is given to the actuator 𝐴, which is a solenoid valve,
allowing the cockpit 𝑃 temperature to be adjusted by controlling the valve opening.
3.1. Step 1 - Hybrid data augmentation

3.1.1. Nominal data augmentation using data-driven system identification
Based on a priori knowledge of temperature control and preliminary

data analysis, a block diagram of the closed-loop system has been
constructed, as shown in Fig. 7.

Data selection. As presented previously (Section 2.1.1), it is first re-
quired to locate data segments corresponding to a ‘‘manual mode’’
(that is, open-loop control) and an ‘‘auto mode’’ (i.e., closed-loop
control) in existing historical data. Among the ten exploitable flights,
forced closure of the actuator (namely the valve) could be observed,
corresponding to a ‘‘manual mode’’ (i.e. open loop control), generat-
ing possibility for identification the system model 𝐺, as proposed in
Section 2.1.1. This particular flight is shown in Fig. 8.

On the other hand, among the ten flights available, there are several
historical data segments corresponding to an ‘‘auto mode’’, with no set-
point variation (i.e. 𝑟 remaining constant). that is the one that comes
from the most recent flight (i.e. most up-to-date configuration of the
system) and provides the largest number of points. This flight displayed
in Fig. 9 is used for identification of the inverse of the controller.

Identification of the system model 𝐺. During a full valve closure com-
mand (see Fig. 8), the system operates in the ‘‘manual mode’’ (ie, as in
open loop) so that the block diagram becomes the one shown in Fig. 10.

Firstly, the actuator 𝐴 and the cockpit 𝑃 are grouped into the
lumped system model 𝐺. The sensor dynamics is much faster than the
system dynamics 𝐺 and therefore is considered negligible. The model
8

is thus described by:

𝑦𝑚 = 𝐺𝑢 + 𝑒 (19)

where 𝐺 is modeled as a first-order transfer function taking into ac-
count the delay:

𝐺(𝑠) = 𝐾𝑒−𝜏𝑠

1 + 𝑇 𝑠
(20)

where 𝜏 is the delay, 𝑇 the time-constant, 𝐾 the steady-state gain
and 𝑒 is a white noise (this assumption corresponds to the use of the
Simplified Refined Instrumental Variable method for Continuous-time
systems (SRIVC) algorithm [54,55]). The parameters of the model are
determined by SRIVC algorithm which is available in the CONtinuous-
Time System IDentification (CONTSID) toolbox [81]. For 𝐺(𝑠), the
following model is thus obtained:

𝐺(𝑠) =
(0.3 ± 0.002)𝑒(−8±0.94)𝑠

1 + (50.5 ± 1.6) s
(21)

where the value after the ± sign represents the estimated standard
deviation. This model 𝐺(𝑠) has been estimated by using the second data
segment from the flight of October 5 (See Fig. 8). The model’s ability to
reproduce the temperature can be evaluated from the results depicted
in Fig. 11. On both estimation and cross-validation data, the simulation
(noise-free) obtained by the approximate low-order model 𝐺(𝑠) is able
to capture the temperature response of the system.

Identification of the controller model 𝐶. The controller 𝐶 is assumed to
be a Proportional Integral (PI) controller. In the selected data segment
(see Fig. 9), the system is in ‘‘auto mode’’ and the set point remains
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Fig. 8. Flight of October 5, 2021. The top plot shows the setpoint temperature 𝑟 and the measured temperature 𝑦𝑚, the middle plot shows the command 𝑢 and the bottom plot
shows the altitude. The data segments corresponding to a ‘‘manual mode’’ selected for the estimation and the validation of the system model 𝐺 are framed in dashed lines.
Fig. 9. Flight of September 29, 2021. The data segment selected to identify the inverse of the controller 𝐶 is framed in dashed lines.
Fig. 10. Block diagram of the air distribution system operating in ‘‘manual mode’’ (i.e. open-loop) during a full closure command of the valve. In this particular case it becomes
possible to identify the system model 𝐺.
constant. As stated in Section 2.1.1, the transfer function that is then
identified (denoted as 𝐿(𝑠)) results in:

𝑦𝑚(𝑠)
𝑢(𝑠)

= 𝐿(𝑠) = − 1
𝐶(𝑠)

(22)

where

𝐿(𝑠) =
𝑏1𝑠 + 𝑏0 (23)
9

𝑠 + 𝑎0
The parameters of 𝐿̂(𝑠) are first estimated by using the SRIVC
algorithm from which the controller estimate 𝐶(𝑠) is deduced as:

𝐶(𝑠) = 𝐾𝑝

(

1 + 𝑇𝑖𝑠
𝑇𝑖𝑠

)

= 1.6
(

1 + 8.6 s
8.6 s

)

(24)

Validation and data augmentation. Given the difficulty of validating
individually the controller model 𝐶 in a closed-loop context, it will be
validated in a complete closed-loop setting [82,83].
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Fig. 11. Comparison of the measured and simulated 𝐺 model responses.
However, the measurement noise effects must be modeled first. To
his end, an estimate 𝑛 of the measurement noise has been generated
rom a low-pass AR(1) model [52,54]:

𝑛(𝑡𝑘) =
1 + 𝑑1

1 + 𝑑1𝑞−1
𝑒(𝑡𝑘) (25)

here 𝑞−1 is the delay operator and 𝑒(𝑡𝑘) is a white noise process of
ariance 𝜎2𝑒 . 𝑑1 has been empirically set to 0.95 to low-pass filter the
hite noise while the variance of 𝑒(𝑡𝑘) has been empirically adjusted

o reproduce the measurement noise levels observed in the historical
ata.

The model of the full closed-loop system is then validated by repli-
ating historical flights in simulation, to assess whether the essential
ynamics have been captured as depicted for a flight profile in Fig. 12.
alidation by flight replication shows that the temperature control
ehavior is effectively reproduced.

From the identified process and controller models, it is then possible
o generate completely new data (nominal data augmentation). This
s done by specifying the desired flight time and setting the setpoint
rofile close to the operating point (i.e. around 22.5 ◦C) to ensure that
he linearity assumption is met as closely as possible. The general model
f the system for generating additional data is shown in Fig. 13.

It should be noted that there are two main advantages of using
ystem identification to perform data augmentation:

• Firstly, augmented data (i.e. additional generated data) can be
obtained with a very limited amount of estimation data and
system knowledge. In comparison, it is generally necessary to use
a large amount of data to train generative AI-based models such
as GANs.

• Secondly, the use of low-order models provides guarantees on the
behavior of the generated data. The use of highly complex deep
learning models (such as GANs) is generally limited by the lack
of consistency guarantees for the dynamics of the data generated
(for example, the outliers can be generated unexpectedly).

.1.2. Physics-based degraded data augmentation
The second aspect of data augmentation consists of injecting pro-

ressive degradation into one component of the air distribution sys-
em in order to generate TTF trajectories. In the signals obtained
rom test flights, minor oscillations are observed in the valve position.
his phenomenon can stem from various sources, such as valve clog-
ing [65], which may indicate a friction defect. Consequently, it is
etermined that the construction of a stiction model is necessary to
imulate a degradation process in the actuator (the valve) by gradually
ntensifying the stiction phenomenon until complete failure.

One well-established stiction model is as follows [84]:

𝑘 =
{

𝑥𝑘−1 + (𝑒𝑘 − 𝑠𝑖𝑔𝑛(𝑒𝑘)𝑓𝐷), if |
|

𝑒𝑘|| > 𝑓𝑠
| |

(26)
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𝑥𝑘−1, if
|

𝑒𝑘| ≤ 𝑓𝑠
with 𝑒𝑘 = 𝑢𝑘 − 𝑥𝑘−1. 𝑓𝑆 and 𝑓𝐷 are respectively the static and dynamic
friction parameter. The graphical characteristic of a valve under such
a stiction phenomenon is depicted in Fig. 14.

To simulate valve degradation, the parameters 𝑓𝑆 and 𝑓𝐷 are in-
creased. Initially, a degradation mode is induced by solely increasing
the parameter 𝑓𝑆 . Practically, this translates to a rise in static friction
resistance over the valve’s lifespan, compelling the controller to incre-
ment the command value for the same movement. Consequently, this
leads to progressively larger oscillations in the setpoint and a jerky
valve behavior, as depicted in Fig. 15. The increase in 𝑓𝑆 parameter
follows a generic exponential degradation model, as elaborated in
Section 2.1.2.

Initially, at the start of the system, the valve operates without fric-
tion (𝑓𝑆 = 0), maintaining a perfectly linear relationship between the
controller command and the valve position. This behavior is illustrated
in Fig. 16, where both variables align precisely. As the system ages,
the valve begins to experience clogging, resulting in increased dry
friction. Consequently, the valve’s response to the controller command
becomes imperfect, exhibiting intermittent operation. Fig. 17 illustrates
this behavior for 𝑓𝑆 = 15.

Fig. 18 illustrates an example of a generated Time-to-Failure (TTF)
trajectory. At the system’s End of Life (EOL), the valve becomes stuck
in a position from which it cannot move. This occurs because the
command range no longer permits a sufficiently high command to
initiate valve movement, signifying complete failure and reaching the
system’s EOL. However, it is essential to note that in real-life scenarios,
such abnormal valve behavior should be detected by the monitoring
system well in advance of complete valve blockage.

3.2. Step 2 - Unsupervised health index extraction

3.2.1. Experiment details
As proposed in Section 2.2, an autoencoder is trained to reproduce

healthy data samples. Consider 𝑁𝑁 nominal training flight index 1 ≤
𝑖 ≤ 𝑁𝑁 , 𝑖 ∈ N for which data from 𝑆 sensors 1 ≤ 𝑠 ≤ 𝑆, 𝑠 ∈ N are
collected. Namely, four signals are collected in this experiment (the
temperature setpoint 𝑟, the command 𝑢, the measured temperature 𝑦𝑚
and the valve position 𝑣), i.e. 𝑆 = 4. Each training flight record 𝑖 has a
total duration denoted as 𝑖, with index 𝑡1 ≤ 𝑡𝑘 ≤ 𝑡𝑖 , 𝑘 ∈ N.

Therefore, the nominal training set is the collection of objects:
{

𝐗𝑖
𝑁
}𝑁𝑁
𝑖=1 with each object 𝐗𝑖

𝑁 ∈ R𝑖×𝑆 . The 𝑠th column 𝑋𝑠(𝑖) therefore
corresponds to the vector of values of sensor 𝑠 for the entire duration
of the flight 𝑖 (i.e. for all time-steps 𝑡1 ≤ 𝑡𝑘 ≤ 𝑡𝑖 ) and the 𝑡𝑘-th row 𝑋𝑡𝑘

(𝑖)

corresponds to the vector of values of all sensor 1 ≤ 𝑠 ≤ 𝑆 for the given
𝑠 (𝑖)
timestep 𝑡𝑘. Finally, the scalar 𝑋𝑡𝑘

is the single value recorded by
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Fig. 12. Replication of flight of September 21, 2021 with the system identification-enabled nominal data augmentation process. Throughout the flight phase, when the control is active,
the general dynamics is properly reproduced. However, towards the end of the recording (i.e., during landing and when the aircraft is on the tarmac), the behavior of the true
system is not linear any more, which may be caused by unknown external disturbances (outside temperature, door opening, etc.).
Fig. 13. Block diagram of the temperature feedback control system model used to generate additional nominal data (generated variables are in bold).
sensor 𝑠 at time-step 𝑡𝑘 on flight 𝑖. This can be summarized as follows:

𝐗𝑖
𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑡1
(𝑖) 𝑋2

𝑡1
(𝑖)

⋯ 𝑋𝑆
𝑡1
(𝑖)

𝑋1
𝑡2
(𝑖) 𝑋2

𝑡2
(𝑖)

⋯ 𝑋𝑆
𝑡2
(𝑖)

⋯ ⋯ ⋱ ⋯

𝑋1
𝑡𝑖

(𝑖) 𝑋2
𝑡𝑖

(𝑖)
⋯ 𝑋𝑆

𝑡𝑖

(𝑖)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑡1
(𝑖)

𝑋𝑡2
(𝑖)

⋯
𝑋𝑡𝑖

(𝑖)

⎤

⎥

⎥

⎥

⎥

⎦

=
[

𝑋1(𝑖) 𝑋2(𝑖) ⋯ 𝑋𝑆 (𝑖)
]

(27)
11
The nominal training data samples are then divided into several
windows:

𝐗𝑖
𝑁 (𝑡𝑤) =

{

𝑋𝑡𝑘
(𝑖)
}𝑤+𝛥

𝑘=𝑤
∈ R𝛥×𝑆 (28)

where 𝑡𝑤 is the start timestep of the window and 𝛥 = 60 s is its total
duration. 𝛥 is a hyperparameter that depends on the system under study
and its dynamics. In particular, 𝛥 = 60 s has proven to be an adequate

range for capturing the dynamics of the control in operation.
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Fig. 14. Valve stiction modeling [85].

Respecting the sensor notation of the case study, this gives the
following time window:

𝐗𝑖
𝑁 (𝑡𝑤) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟 𝑡𝑤
(𝑖) 𝑢 𝑡𝑤

(𝑖) 𝑦𝑚 𝑡𝑤
(𝑖) 𝑣 𝑡𝑤

(𝑖)

𝑟 𝑡𝑤+1
(𝑖) 𝑢 𝑡𝑤+1

(𝑖) 𝑦𝑚 𝑡𝑤+1
(𝑖) 𝑣 𝑡𝑤+1

(𝑖)

⋯ ⋯ ⋯ ⋯
𝑟 𝑡𝑤+𝛥

(𝑖) 𝑢 𝑡𝑤+𝛥
(𝑖) 𝑦𝑚 𝑡𝑤+𝛥

(𝑖) 𝑣 𝑡𝑤+𝛥
(𝑖)

⎤

⎥

⎥

⎥

⎥

⎦

(29)

3.2.2. Data preprocessing
During the training phase, the autoencoder receives healthy data

comprising ten flights generated via the healthy data augmentation
process outlined in Section 2.1.1. To simulate real-world conditions
accurately, these generated flights have random durations ranging
between four and seven hours. Furthermore, the initial set-point is
randomly set between 22.5 and 25 ◦C, and within each flight, a random
amplitude and change in time set-point step is implemented. To ensure
uniform feature weighting in the reconstruction training process, each
sensor signal 𝑋𝑠(𝑖) is standardized as

𝑋𝑠
𝑡𝑘
(𝑖)

𝑠𝑐𝑎𝑙𝑒𝑑
=

𝑋𝑠
𝑡𝑘
(𝑖) − 𝜇(𝑠)

𝜎(𝑠)
(30)

with mean of sensor 𝑠:

𝜇(𝑠) = 1
𝑁𝑁 × 𝑇𝑖

𝑁𝑁
∑

𝑖=1

𝑇𝑖
∑

𝑘=1
𝑋𝑠

𝑡𝑘
(𝑖) (31)

and standard deviation of sensor 𝑠:

𝜎(𝑠) =

√

√

√

√
1

𝑁𝑁 × 𝑇𝑖

𝑁𝑁
∑

𝑖=1

𝑇𝑖
∑

𝑘=1

[

𝑋𝑠
𝑡𝑘
(𝑖) − 𝜇(𝑠)

]2
(32)

An analysis of the evolution of the distribution of characteristics
over time in ten TTF trajectories generated in the same way as in Fig. 18
can be found in Fig. 19. Taking the first quarter of life as a reference,
the following observations can be formulated:

• In the second quarter of life, the medians for each of the sensors
remain fairly unchanged, but the outliers have widened, as have
the boundaries of the whiskers.

• By the third quarter of life, the medians have moved slightly away
from their initial value and the interquartile range has increased
significantly, as have the whiskers.

• In the last quarter of life (i.e., the fraction of life in which EOL
is reached), the general distribution of each sensor is completely
different from its initial distribution.

All this demonstrates that the feature space deviation hypothesis
formulated in Section 2.2.2 ( ≠  ) is evident.
12

𝑁 𝐷
Table 1
Set of hyperparameters for Dassault Aviation experiment.

Hyper-parameters Values

Size of encoder layers 240, 120, 60, 30
Size of decoder layers 60, 120, 180
Window size 𝛥 60 s
Range of durations 𝑖 of flight records for training 4 to 7 h
Iterations (also called Epochs) 200

3.2.3. Autoencoder structure and hyperparameters
The autoencoder structure used for sensor reconstruction consists

of Fully Connected Layers (FCL). Each time window is vectorized to
produce a vector (vec(𝐗𝑖

𝑁 (𝑡𝑤))) of length 60 × 4 = 240, which serves
as the input layer’s size. The decoder mirrors the encoder’s structure
symmetrically, excluding the reconstruction of the set-point signal. The
complete network structure is illustrated in Fig. 20, with details of the
hyperparameters provided in Table 1.

The unsupervised HI extraction process can be visualized in Fig. 21,
which distinguishes the training part (Fig. 21(a)) from the testing part
(Fig. 21(b)).

More formally, the process of training the autoencoder to recon-
struct multivariate sensor windows is described in Algorithm 2.

Algorithm 2: Autoencoder training for sensor reconstruction.
Input: A training set of 𝑁𝑁 nominal (i.e. healthy) flight

records
{

𝐗𝑖
𝑁
}𝑁𝑁
𝑖=1 , each of length 𝑖.

Output: A trained autoencoder model with optimal weights
𝜃⋆𝑒 , 𝜃

⋆
𝑑 .

for iter = 1 to  do
for 𝑖 = 1 to 𝑁𝑁 do

Divide the flight record 𝐗𝑖
𝑁 into vectorized windows

𝑣𝑒𝑐(𝐗𝑖
𝑁 (𝑡𝑤)) of duration 𝛥;

for each vectorized window do
̂𝑣𝑒𝑐(𝐗𝑖

𝑁 (𝑡𝑤)) ← 𝑔𝜃𝑑 (𝑓𝜃𝑒 (𝑣𝑒𝑐(𝐗
𝑖
𝑁 (𝑡𝑤))));

𝐸(𝑡𝑤) =
‖

‖

‖

‖

𝑣𝑒𝑐(𝐗𝑖
𝑁 (𝑡𝑤)) − ̂𝑣𝑒𝑐(𝐗𝑖

𝑁 (𝑡𝑤))
‖

‖

‖

‖

;

𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 + 𝐸(𝑡𝑤);
end
𝐿𝑖𝑡𝑒𝑟 ← 𝐿𝑖𝑡𝑒𝑟 + 𝑙𝑜𝑠𝑠;

end
Update 𝜃𝑒, 𝜃𝑑 by computing gradient descend on iteration
loss 𝐿𝑖𝑡𝑒𝑟;

end

Once training is complete, the optimal weights 𝜃⋆𝑒 and 𝜃⋆𝑑 are
frozen. The test process, i.e. the HI extraction from one TTF trajectory
under degradation of duration 𝑖, can be formulated as the total recon-
struction of vector 𝑣𝑒𝑐(𝐗𝑖

𝐷(𝑡𝑤)) in the trajectory, with 𝑡𝑤 in 𝑡1 to 𝑡𝑖 .
This is summarized in Algorithm 3. Note that, for the present study,
a trajectory obtained using the degraded data augmentation process
developed in Section 3.1.2 is used as test data.

3.2.4. Experimental results
According to the process described in Fig. 21, the reconstructed

signals are compared to the original ones, providing the evolution of the
reconstruction error over time. The signals collected during the entire
life of one example aircraft, together with the associated HI at each
instant are displayed in Fig. 22.

It can be observed that the reconstruction error increases with
the degradation of the system until the EOL is attained, just before
2000 min of life.

Finally, the HI trajectories are normalized between zero and one,
taking into account the training trajectories (since the test trajectories
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Fig. 15. The evolution of the valve characteristic as a function of the increase of the 𝑓𝑆 coefficient.
Fig. 16. Valve behavior when 𝑓𝑆 = 0 (perfectly linear).
Fig. 17. Valve behavior when 𝑓𝑆 = 15 (i.e. half degradation).
Algorithm 3: HI extraction procedure using the reconstruction
error for one test trajectory.

Input: One test trajectory 𝐗𝑖
𝐷 of duration 𝑖.

Output: A HI trajectory 𝐇𝐈𝑖 of duration 𝑖.
Divide the trajectory 𝐗𝑖

𝐷 into vectorized windows 𝑣𝑒𝑐(𝐗𝑖
𝐷(𝑡𝑤))

of duration 𝛥;
for each vectorized window do

̂𝑣𝑒𝑐(𝐗𝑖
𝐷(𝑡𝑤)) ← 𝑔𝜃⋆𝑑 (𝑓𝜃⋆𝑒 (𝑣𝑒𝑐(𝐗

𝑖
𝐷(𝑡𝑤))));

HI𝑡𝑤 ←
∑𝑤+𝛥

𝑘=𝑤
‖

‖

‖

‖

𝑣𝑒𝑐(𝐗𝑖
𝐷(𝑡𝑘)) −

̂𝑣𝑒𝑐(𝐗𝑖
𝐷(𝑡𝑘))

‖

‖

‖

‖

;

end
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are not known) according to the following equation:

𝑛𝑜𝑟𝑚(HI𝑡𝑘 ) =
HI𝑡𝑘 − 𝑚𝑖𝑛(𝐇𝐈𝑡𝑟𝑎𝑖𝑛)

𝑚𝑎𝑥(𝐇𝐈𝑡𝑟𝑎𝑖𝑛) − 𝑚𝑖𝑛(𝐇𝐈𝑡𝑟𝑎𝑖𝑛)
(33)

where 𝐇𝐈𝑡𝑟𝑎𝑖𝑛 =
{

𝐇𝐈𝑖
}𝑁
𝑖=1 is the set of 𝑁 HI trajectories obtained from

the training set.
It should be pointed out that this last step of normalization is

optional and allows the HI trajectories to be visualized between 0 and
1 (without any loss of information) in accordance with established
practice in the PHM community. To conclude, the proposed approach is
tested over a set of ten test TTF trajectories. The median HI trajectory,
with standard deviation with respect to the fraction of total life passed
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Fig. 18. Example of a TTF trajectory generated by the prognostics-oriented data augmentation process. The oscillation of the measured temperature around the set-point is
increasing with the increase of the parameter 𝑓𝑆 . At the end of life, the command sent by the controller saturates at 0, so the valve can no longer be opened and remains
permanently blocked, ending all control. This corresponds to the EOL.
Fig. 19. The deviation of the degraded feature space 𝐷 over time. TTF trajectories are divided into quarters of life, for each of which the distribution of features (i.e. sensors) is
plotted in boxplots.
Fig. 20. The structure of the autoencoder for signal reconstruction, with different FCL
sizes.

is depicted in Fig. 23 (without normalization), demonstrating the clear
trend in the HI obtained by exploiting the reconstruction error.

3.3. Step 3 - HI long-term prediction for RUL estimation

Long-term HI prediction. The set of 10 HI trajectories obtained in
Section 3.2.4 serves as training data for the long-term sequence-to-
sequence HI prediction model presented in Section 2.3.2. The hyperpa-
rameters of the LSTM prediction model, which are empirically chosen
during the training phase, can be found in Table 2.

The LSTM prediction model is used to perform long-term chained
predictions of sequences of HI, as described in Section 2.3.1, until
the EOL threshold (equal to 1) is reached, according to the procedure
described in Algorithm 1. Fig. 24 displays two HI chain predictions,
14
Table 2
Hyperparameters of the long-term HI prediction task.

Hyperparameter Value

Number of stacked LSTM layers 3
Size of hidden state 240
Dropout 0.2
Size of FCL |

|

FCL1
|

|

= (||
|

ℎ𝑡𝑘
|

|

|

× 𝛥𝑝𝑟𝑒𝑑 )∕4
|

|

FCL2
|

|

= |

|

FCL1
|

|

∕4
|

|

FCL3
|

|

= 𝛥𝑝𝑟𝑒𝑑
Input window length 𝛥𝑖𝑛𝑝𝑢𝑡
Input window length 𝛥𝑖𝑛𝑝𝑢𝑡 8 h
Output window length 𝛥𝑜𝑢𝑡𝑝𝑢𝑡 3 h
Overlapping 𝛿 1.5 h

for the same TTF test trajectory. In the first prediction (Fig. 24(a)),
the prediction starts from 𝑡𝑘 = 480 minutes, whereas in the second
(Fig. 24(b)) the prediction starts at 𝑡𝑘 = 800 minutes. It is observed
that the earlier the prediction starts, the less accurate it is, as the total
prediction duration is longer and more prediction errors accumulate.

RUL estimation algorithm. At each timestep of the life of the system,
Algorithm 1 is performed, in order to obtain a RUL estimation. When
executing it for the whole life of a test system, a complete RUL tra-
jectory until the EOL is obtained. A test result of this RUL prediction
process can be seen in Fig. 25, along with RUL ground truth. The
estimation of the RUL becomes more and more precise as the EOL is
neared (cf. Fig. 24(b)). It is also noted that early in the life of the
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Fig. 21. Overall process of the unsupervised extraction of HI based on the reconstruction error.
system, the evolution of the HI can lead to inaccurate predictions, as
described in Fig. 24(a).

The RMSE for each individual TTF test trajectory can be seen in
Fig. 26(a). Similarly, the RMSE computed on the first fifteen and last
fifteen RUL predictions is depicted in Fig. 26(b). This confirms, at the
level of each individual test trajectory, the significant improvement in
prediction as the end of life of the system is approached.

Discussion about the choice of the hyperparameters. As introduced in
Section 2.3.1, for sequence-to-sequence prediction, three main hy-
perparameters have a significant impact on the performance of the
prediction, namely the input window length 𝛥𝑖𝑛𝑝𝑢𝑡, the output window
length 𝛥𝑝𝑟𝑒𝑑 and the overlapping 𝛿. In Table 3, various combinations of
these three hyperparameters are tested, with mean RMSE and standard
deviation obtained in each case.

The following observations can be formulated:

• In all cases, the use of overlapping 𝛿 improves the performance
of RUL prediction, all other hyper-parameters being equal. This
therefore confirms the statement made in Section 2.3.1.

• The more 𝛥𝑖𝑛𝑝𝑢𝑡 > 𝛥𝑝𝑟𝑒𝑑 , the better the prediction.
• It is essential to avoid the case where 𝛥𝑖𝑛𝑝𝑢𝑡 < 𝛥𝑝𝑟𝑒𝑑 , i.e. trying to

predict a longer sequence than the one provided as input, which
would be equivalent to extrapolating excessively on the basis of
limited information.

However, it is important to note that the selection of these param-
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eters is not solely based on optimizing prediction performance but is
Table 3
Impact assessment of hyper-parameters 𝛥𝑖𝑛𝑝𝑢𝑡, 𝛥𝑜𝑢𝑡𝑝𝑢𝑡 and 𝛿 on RUL prediction (all other
hyper-parameters being equal to the values indicated in Table 2).

Input window
length 𝛥𝑖𝑛𝑝𝑢𝑡

Output window
length 𝛥𝑜𝑢𝑡𝑝𝑢𝑡

Overlapping
𝛿

Mean RMSE STD

8 h 3 h 0 14.89 2.4
8 h 3 h 1.5 h 8.44 1.65
8 h 8 h 0 36.46 5.04
8 h 8 h 4 h 17.18 2.97
3 h 3 h 0 26.2 13.13
3 h 3 h 1.5 h 19.02 9.66
3 h 8 h 0 41.2 12.3
3 h 8 h 1.5 h 35.68 12.06

primarily dictated by the system’s constraints. Specifically, the choice
of 𝛥𝑖𝑛𝑝𝑢𝑡 depends on the system’s initial lifetime, where having no RUL
prediction may be acceptable. Additionally, consideration should be
given to the MTTF of the system when selecting 𝛥𝑖𝑛𝑝𝑢𝑡 and 𝛥𝑝𝑟𝑒𝑑 . If
the MTTF is small, shorter windows should be used, whereas for a
large MTTF, input and output windows can be extended. Moreover, it is
feasible to train multiple prediction models to enable predictions based
on short input windows (𝛥𝑖𝑛𝑝𝑢𝑡 small) initially when few HI values are
known, transitioning to a model utilizing longer input windows (𝛥𝑖𝑛𝑝𝑢𝑡
larger) as more data becomes available.

Some other hyperparameters that concern the model itself. For the
stacked-LSTM model that is used here (see Fig. 5), the key parameters

are the number of LSTM layers (denoted as 𝐿) and the size of the
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Fig. 22. HI trajectory obtained from the reconstruction error of the signals collected on one example TTF trajectory. Input multivariate sensor data is plotted on the top graph,
corresponding HI trajectory is plotted on the bottom graph. Once the EOL moment has passed, the system no longer operates and, as a result, the reconstruction error (i.e. the
HI) falls back.
Fig. 23. Median HI trajectory along with standard deviation based on the reconstruc-
tion error approach for a test set of ten TTF trajectories, w.r.t. fraction of total life
passed.

hidden state (denoted as |

|

|

ℎ𝑡𝑘
|

|

|

). Choosing these hyperparameters is
formally equivalent to the question of model selection among a family
of model [86]. Hyperparameter tuning can be achieved by manual
grid searching, by selecting hyper-parameters quoted in research pa-
pers [75] or by implementing optimization algorithms [87]. The results
of a manual grid tuning of the number of layers and the size of the
hidden state are shown in Table 4.

3.3.1. Reliability-based assessment of the AI approach
The RUL prediction AI-based approaches are assessed against tradi-

tional reliability approach, as described in Section 2.3.4.
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Table 4
Manual grid optimization of the number of layers and hidden state size for the stacked-
LSTM model used for RUL prediction (all other hyper-parameters being equal to the
values indicated in Table 2). Best combination performance is in bold.

Number of layers 𝐿 Hidden state size |

|

|

ℎ𝑡𝑘
|

|

|

Mean RMSE Standard deviation

1
60 10.46 3.40
120 10.15 3.11
240 9.31 2.73

3
60 8.92 2.02
120 9.50 2.25
240 8.44 1.65

6
60 10.83 2.87
120 9.30 2.37
240 10.63 2.70

Overview of the proposed assessment approach. To that end, a set of 𝑁 =
20 TTF trajectories is generated using the degraded data augmentation
method described in Section 3.1.2, with respect to a predefined Weibull
failure probability distribution 𝐹𝑟𝑒𝑓 (𝑡) (cf. Eq. (18)).

Through this comprehensive process, RUL predictions are derived
from raw sensor data. Subsequently, a list of 𝑁 EOL instants (i.e.,
scalars) can be reconstructed and utilized to identify the parameters
of the corresponding approximated Weibull distribution. This enables
comparison between the reference distribution 𝐹𝑟𝑒𝑓 (𝑡) and the approx-
imated distribution obtained post-prediction of the RUL, 𝐹𝑝𝑟𝑒𝑑 (𝑡). The
entire reliability-based assessment is outlined in Algorithm 4.

The failure distribution 𝐹𝑝𝑟𝑒𝑑 (𝑡) is estimated using the median rank
estimation method [79].

𝐹𝐻𝐼 (𝑡𝑖) =
𝑛𝑖 − 0.3
𝑁 + 0.4

(34)

with 𝑛𝑖 as the cumulative number of faulty systems, 𝑁 as the total
number of systems (here 𝑁 = 10) and 𝑡 as the EOL time. Then, applying
𝑖
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Fig. 24. Two HI predictions starting at different initial timesteps.
Fig. 25. Complete RUL estimation trajectory for one test flight.

Algorithm 4: Overall reliability-based assessment process.
Input: A set 𝐗 of 𝑁 multi-dimensional time series

𝐗𝑖 =
{

𝑋𝑡𝑘

}𝑇𝑖

𝑘=1
of duration 𝑇𝑖 following a Weibull

distribution 𝐹𝑟𝑒𝑓 , a selected distance 𝑑.
Output: A set of 𝑁 EOL moments 𝑇𝑖(𝑡𝑘=𝐸𝑂𝐿−𝑑 ) predicted

starting from timestep 𝑡𝑘=𝐸𝑂𝐿−𝑑 (i.e. at a distance 𝑑 of
the true EOL) following a distribution 𝐹𝑅𝑈𝐿(𝑡𝑘=𝐸𝑂𝐿−𝑑 )

for 𝑖 = 1 to 𝑁 do
𝐇𝐈𝑖 ← 𝑚𝛩𝑚

(𝐗𝑖) where 𝑚𝛩𝑚
represents the HI extraction

model parameterized by 𝛩𝑚;
𝐑𝐔𝐋𝑖 ← 𝑛𝛩𝑛

(𝐇𝐈𝑖) where 𝑛𝛩𝑛
represents the RUL prediction

model parameterized by 𝛩𝑛;
𝑇𝑖(𝑡𝑘=𝐸𝑂𝐿−𝑑 ) ← RUL𝑖(𝑡𝑘=𝐸𝑂𝐿−𝑑 ) + 𝑘 where RUL𝑖(𝑡𝑘) is the
𝑘-th RUL value selected from trajectory 𝐑𝐔𝐋𝑖;

end
𝐹𝑅𝑈𝐿(𝑡𝑘=𝐸𝑂𝐿−𝑑 ) ← empirical CDF from all 𝑇𝑖(𝑡𝑘=𝐸𝑂𝐿−𝑑 );

a double log transformation, a linear model is obtained. Then, a least
squares based linear regression is applied to obtain the estimate of
parameters 𝛼 and 𝛽 of the Weibull distribution.

log(− log(1 − 𝐹 (𝑡))) = 𝛽 log(𝑡) − 𝛽 log(𝛼) (35)

Then, a least squares based linear regression can be applied to
obtain estimated parameters 𝛼 and 𝛽 of the corresponding Weibull
distribution.
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Kolmogorov–Smirnov test. The Kolmogorov–Smirnov test [80] com-
pares the observed distribution of a statistical sample with a theoretical
distribution. The hypothesis tested is:
‘‘The CDF of the random variable 𝑇 , denoted as 𝐹 , is equal to the
reference CDF 𝐹𝑟𝑒𝑓 ’’ with a risk of error 𝛼.

The aim is thus to obtain an estimate of the CDF from the observed
sample, denoted as 𝐹 , and then compare it with the CDF of the
theoretical distribution, denoted as 𝐹𝑟𝑒𝑓 . If the tested hypothesis is true,
then the empirical CDF 𝐹 of the sample must be close to the CDF 𝐹𝑟𝑒𝑓 ,
because both mean and variance of the empirical CDF are unbiased
estimators.

The empirical CDF is defined by:

𝐹 (𝑡) = 1
𝑁

𝑁
∑

𝑖=1
1𝑇𝑖<𝑡 (36)

The fit of the CDF 𝐹 to 𝐹𝑟𝑒𝑓 is quantified using a specific distance
known as the Kolmogorov–Smirnov distance, which is intuitively the
maximum absolute difference between 𝐹 and 𝐹𝑟𝑒𝑓 for each 𝑇𝑖 according
to the formula [88]:

𝐷𝐾𝑆 (𝐹𝑟𝑒𝑓 , 𝐹 ) = max
𝑖=1,…, 𝑁

{

|

|

|

|

𝐹 (𝑇𝑖) −
𝑖
𝑁

|

|

|

|

,
|

|

|

|

𝐹 (𝑇𝑖) −
𝑖 − 1
𝑁

|

|

|

|

}

(37)

Finally, the distance 𝐷𝐾𝑆 (𝐹𝑟𝑒𝑓 , 𝐹 ) is compared with a critical value
𝐷𝑎,𝑁 provided by the Kolmogorov–Smirnov table [89]. The hypothesis
is accepted with an 𝛼 risk of error if 𝐷𝐾𝑆 (𝐹𝑟𝑒𝑓 , 𝐹 ) < 𝐷𝛼,𝑛.

Experimental results. From the set 20 TTF trajectories generated using
the degraded data augmentation method with respect to the predefined
Weibull failure probability distribution 𝐹𝑟𝑒𝑓 (𝑡) (𝛼 = 27 and 𝛽 = 3.5), 10
are used to train the RUL prediction model and 10 are available as a
test set.

As detailed in Section 3.3, the accuracy of RUL prediction improves
as the EOL approaches and is less reliable at the system’s initial stages.
Consequently, assessments are conducted at various distances from
the true EOL (𝑑 in Algorithm 4). Specifically, from all available RUL
trajectories, EOL values 𝑇𝑖 are retrieved from the RUL trajectories at
𝑡𝑘=𝐸𝑂𝐿−15ℎ, 𝑡𝑘=𝐸𝑂𝐿−10ℎ, 𝑡𝑘=𝐸𝑂𝐿−5ℎ, and 𝑡𝑘=𝐸𝑂𝐿−3ℎ, representing different
points in time for RUL assessment. Fig. 27 illustrates the four time
points when RUL values are retrieved for testing from a complete RUL
trajectory. It is important to note that the number 𝑁 of available 𝑇𝑖
in each observed sample may vary because not all trajectories have
the same duration, and thus, some may be too short to achieve the
desired prediction distance 𝑑 from the EOL. The results of the four tests
conducted are presented in Table 5.

In each case, the hypothesis is accepted, indicating that the pre-
dictions are consistent with the reference distribution. Furthermore,
it is observed that the distance 𝐷 (𝐹 , 𝐹 ) decreases as the EOL
𝐾𝑆 𝑝𝑟𝑒𝑑 𝑟𝑒𝑓
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Fig. 26. Evaluation of RUL prediction performance using RMSE.
Fig. 27. Collecting RUL values at four different time moments to perform several Kolmogorov–Smirnov tests.
Table 5
Parameters of the Weibull distribution(Reference vs. estimated from predicted RUL values) at different moments, along with Kolmogorov–Smirnov test result.

𝑁 TTF
available

𝜂 𝛽 K-S Distance
𝐷𝐾𝑆 (𝐹𝑝𝑟𝑒𝑑 , 𝐹𝑟𝑒𝑓 )

Critical limit
𝐷0.05,𝑁

Hypothesis accepted?
(i.e. 𝐷𝐾𝑆 (𝐹𝑝𝑟𝑒𝑑 , 𝐹𝑟𝑒𝑓 ) < 𝐷0.05,𝑁 )

Reference Weibull distribution
for data generation

20 27 3.5 – – –

Distribution 𝐹𝑝𝑟𝑒𝑑
at 𝑡𝑘=𝐸𝑂𝐿−3ℎ

10 24.8 5 0.125 0.410 Yes

Distribution 𝐹𝑝𝑟𝑒𝑑
at 𝑡𝑘=𝐸𝑂𝐿−5ℎ

8 22.8 3.9 0.24 0.457 Yes

Distribution 𝐹𝑝𝑟𝑒𝑑
at 𝑡𝑘=𝐸𝑂𝐿−10ℎ

5 23.1 3.9 0.4 0.565 Yes

Distribution 𝐹𝑝𝑟𝑒𝑑
at 𝑡𝑘=𝐸𝑂𝐿−15ℎ

4 22.1 3.4 0.5 0.624 Yes
approaches, indicating an increase in the prediction robustness. This
reaffirms the findings observed with RMSE in Section 3.3. This trend
is critical because as a system approaches its EOL, monitoring its SOH
becomes increasingly essential for optimal maintenance. Consequently,
the proposed reliability-based assessment strategy strengthens the AI-
based approach. Despite performing prognostics at the system level
using historical data from individual equipment and employing black-
box approaches, it is demonstrated that by aggregating all individual
predictions, established reliability laws are adhered to, enhancing the
credibility of AI-based models.
18
4. Conclusion

In this paper, a comprehensive framework is proposed for RUL
prediction in realistic industrial scenarios, eliminating the need for
prior degradation data. A novel physics-informed data augmentation
approach addresses this limitation, ensuring interpretability and consis-
tency with general physics based laws. To that end, firstly, a hybrid data
augmentation procedure is proposed, allowing integration of system
knowledge (available a priori) and physics of failure into the training
data. Secondly, an unsupervised Health Index (HI) extraction approach
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is developed, followed by long-term HI prediction, enabling efficient
prediction of RUL without labeled data. Finally, a reliability-based as-
sessment is conducted to validate the proposed approach. The proposed
approach is tested on an aeronautical system in real industrial context
but remains applicable in a broad sense to various dynamical systems
vulnerable to functional degradation(s). The unsupervised HI extraction
using autoencoder reconstruction error does not require labeled data,
offering excellent generalization capabilities solely based on nominal
system behavior. Moreover, reliability-based assessment demonstrates
that although autoencoder and LSTM networks are black-box models,
the HI and RUL trajectories closely align with real failure probability
distributions, boosting confidence in AI-based approaches. Future re-
search will explore integrating uncertainty quantification in variational
framework as well as development of advanced deep neural network
structures for superior performance in the unsupervised context.
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