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Abstract

We propose a simultaneous variable selection method for material sorting based on near infrared spectroscopic data. Our objective
is to perform fast classification in industrial wood recycling processes based only on a few spectral bands. The spectra are first
jointly modeled as linear combinations of explanatory variables drawn from a collection of Gaussian-shaped functions. The aim is
to select a common subset of wavebands shared by several spectra. The variable selection is then formulated as an unconstrained
simultaneous sparse approximation problem in which the coefficients related to different spectra are encouraged to be piecewise
constant, i.e. the coefficients associated to successive spectra should have comparable magnitudes. We also investigate the case
where the coefficients are constrained to be nonnegative. These problems are solved using the fast iterative shrinkage-thresholding
algorithm. The proposed approaches are illustrated on a dataset of 290 spectra of wood wastes; each spectrum is composed of 1647
wavelengths. We show that the selected variables lead to better classification performances as compared to standard approaches.
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1. Introduction

Near infrared (NIR) spectroscopy is a vibrational spec-
troscopy which provides information about the molecular com-
position and interactions within the studied material sample
[1, 2]. As the sample spectrum is a kind of signature charac-
terizing the material, NIR spectroscopy is used in a wide range
of applications, including material identification, characteriza-
tion and non destructive evaluation [3, 4]. In this work the tar-
geted application is material (wood wastes) sorting, which is
envisaged as a supervised classification problem. To face the
curse of dimensionality and avoid overfitting problems, feature
selection has been recognized as a key step, especially when the
variables are highly correlated. The problem is to find a small
subset of variables describing the main characteristics of the
different classes. Popular features selection approaches include
best subset selection [5, 6], forward and backward stepwise re-
gression [7, 8], forward stagewise regression and sparse linear
regression known as the Lasso (Least absolute shrinkage and
selection operator) [9].

Sparse representations have been widely studied over the
last decade, and applied to different problems such as data com-
pression [10, 11], pattern recognition [12], classification and
clustering [13, 14], and hyperspectral image unmixing and clas-
sification [15, 16, 17]. It is based on the assumption that the es-
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sential characteristics of the data can be approximated by a lin-
ear combination of a few atoms (also named explanatory vari-
ables) drawn from an overcomplete dictionary. Feature selec-
tion may also be viewed as dimensionality reduction problem
that can be tackled using a sparse approximation. The idea is
simply to select the set of atoms corresponding to nonzero coef-
ficients resulting from the approximation. More recently, group
sparsity was introduced to enforce certain structural constraints.
Restricting our attention to simultaneous sparsity, a particular
instance of group sparsity, we seek at finding a set of coeffi-
cients explaining jointly the observed variables. As it involves
an `0 “norm”, solving the exact simultaneous sparse approx-
imation problem yields to an NP-hard problem for which the
greedy methods provide a good compromise between recon-
struction accuracy and computational cost [18, 19, 20]. Convex
relaxations of the simultaneous sparse approximation was also
proposed in [21].

In this paper, we propose a simultaneous variable selection
strategy for NIR spectra based on sparse decomposition. Given
a set of training spectra, the core idea consists in finding a small
subset of wavebands/variables that captures the main spectral
components shared by several measurements. The wavebands
are picked from a dictionary containing Gaussian features of
various centers and widths. The regression coefficients associ-
ated to the selected variables may then be used to perform clas-
sification of candidate spectra. Some similar approaches have
been already proposed in the literature. For example, Turlach
et al. [22] presented a simultaneous variable selection algorithm
and applied it to NIR spectra. Unlike [22], the sparse decompo-
sition problem considered in this work incorporates a regular-
ization term enforcing the rows of the coefficient matrix to be
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Figure 1: Illustration of spectra ordering in data matrix Y. The spectra are
ordered according to their groups and class labels.

piecewise constant. The intuition behind the proposed approach
is quite simple. Consider the situation where the samples can
be divided into groups and that a class includes different groups.
Rather than randomly gathering the samples into the data ma-
trix, we propose to order them according of their group labels.
Figure 1 illustrates this ordering for a two class problem with
11 groups. Consecutive samples belong to the same group and
are expected to share common features. This will be captured
by enforcing piecewise constant coefficients and group spar-
sity. Malli and Natschläger [23] also proposed a waveband se-
lection algorithm for spectroscopy based on fused Lasso [24].
The fused penalty encourages the selection of connected wave-
lengths resulting in the so-called “wavebands”. On the contrary,
the method presented here consists in modeling the spectra with
Gaussian-shaped functions. By doing so, not only the algorithm
is structurally able to select wavebands rather than individual
wavelengths but it also allows to reduce the number of spectral
features (variables). These properties are particularly suitable
for high speed industrial classification because the computa-
tional cost of the regression coefficients, associated to a small
number of variables, is pretty low.

The paper is organized as follows. In Section 2, we present
the regularized simultaneous sparse approximation problem in-
volving an `0/`2 mixed pseudo-norm. The details of the convex
relaxation approaches are described in Section 3. Specifically,
we first propose the `1/`1 relaxation and then the `1/`2 surro-
gate of the `0/`2 norm. Both relaxations lead to algorithms that
enjoy a decomposition property allowing one to compute an ef-
ficient solution even for large scale problems. We also propose
a nonnegative version of these algorithms. An application to
wood wastes sorting based on NIR measurements is provided
in Section 4. Finally, conclusions and drawn in Section 5.

Notation. Scalars are denoted by regular letters (N, s, λ), col-
umn vectors by lower-case bold-face letters (x,φ), and matri-
ces as bold-face capitals (X,Φ). xi is i-th column of X and xi

denotes the transpose of the i-th row. Notation (·)> stands for
matrix or vector transposition. ||A||p,q is the mixed `p/`q-norm
and ||A||F is the Frobenius norm of matrix A. The symbols “⊗”,
“∗”, and “◦” denote the Kronecker product, the Hadamard (en-
trywise) product, and the composition operator, respectively.

2. Problem formulation

Suppose that K response variables (spectra) are collected
and stacked in the columns of a data matrix Y ∈ RM×K where

M is the number of observations in each spectrum. The matrix
Y is assumed to be group ordered as illustrated in fig. 1. We
seek to decompose the matrix Y such that:

Y ≈ ΦX, (1)

where X ∈ RN×K is a sparse coefficient matrix meaning that
only a small subset of its rows is nonzero. The columns of the
redundant dictionary Φ = [φ1, . . . ,φN] ∈ RM×N represents the
explanatory variables (also called atoms). This dictionary is de-
signed to concentrate the energy of the signals in Y over a set
of a few atoms. Its choice depends essentially on the applica-
tion at hand. As in NIR spectra, the observed peaks are typi-
cally very broad, we assume in the present work that the φn’s
are Gaussiand-shaped functions whose locations (central wave-
lengths) and widths cover all the NIR range. In other words,
each atom is used as a model representing the most significant
spectral bands in the available data.

The simultaneous sparse approximation [25, 26] consists in
finding a solution X having a limited number of active rows.
The problem can be formulated as

minimize
X

1
2 ||Y −ΦX||2F , (2a)

subject to ||X||0,2 ≤ s, (2b)

where ||X||0,2 is the mixed `0/`2 pseudo-norm of X (i.e. the
number of rows with nonzero `2-norm) and s � N is the spar-
sity parameter which is related to the support of X: supp(X) =

{1 ≤ n ≤ N | xn , 0}. The rationale behind simultaneous recon-
struction for variable selection is to find predictors for all in-
put signals in Y from a common subset of active variables [22]
which are indexed by the support of the solution X.

The regularized simultaneous sparse approximation aims
at reconstructing piecewise constant rows. In that respect, as
in [23], we propose to include a regularization term leading to
the following problem

minimize
X

1
2 ||Y −ΦX||2F + λ2||DX>||1,1, (3a)

subject to ||X||0,2 ≤ s, (3b)

where D ∈ R(K−1)×K is a matrix of finite differences of order 1:

D =


−1 1 0

0
. . .

. . .

−1 1

 . (4)

Criterion (3) includes an additional total variation-like penalty
enforcing sparsity in the differences between successive
columns of X: ||DX>||1,1 =

∑K−1
i=1 ||xi+1 − xi||1. This, in fact,

encourages the reconstruction of piecewise constant rows. It is
important to note that this penalty makes sense only if the sig-
nals in Y have a meaningful ordering. This is for example the
case when the signals are ordered according to their class or
group labels in the training phase. In hyperspectral image clas-
sification, the signals are naturally ordered according to their
spatial position. Due to the `1 penalty, consecutive columns of
X tend to be similar which helps to decrease intragroup vari-
ance. Following the terminology of the fused Lasso, this term
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will be referred to as the fusion penalty. The formulation in (3)
involving the mixed `0/`2 norm will lead to an NP-hard prob-
lem, thus making the resolution not easy. A suboptimal but
simple approach to solve (3) was proposed in [27]. In the next
section, we propose a convex relaxation of the `0/`2 norm and
the resulting problem is solved using fast and effective algo-
rithms.

3. Convex relaxations

3.1. Fused Sparse Lasso
The first relaxation of the constrained problem (3) consists

in minimizing the following penalized criterion:

JFS L(X) = 1
2 ||Y −ΦX||2F + λ1||X||1,1 + λ2||DX>||1,1 (5)

where ||X||1,1 =
∑K

i=1 ||xi||1 =
∑N

n=1 ||x
n||1. The parameters

λ1, λ2 ≥ 0 are controlling the tradeoff between data fitting, the
sparsity term ||X||1,1, and the fusion penalty ||DX>||1,1. This cri-
terion is in fact an extension to the multiple measurement vec-
tor setting of the sparse fused Lasso which was studied in [24]
and solved using a two-phase active set algorithm [28] designed
for quadratic programming problems with linear sparsity con-
straints. In [29], the problem is extended to general graphs
where the fusion term is promoting constant coefficients over
neighboring variables. This approach does not include the ad-
ditional sparsity term. It is referred to as the generalized fused
Lasso (GFL). In [30] it is proposed to solve the generalized
sparse fused Lasso problem (including both sparsity and fusion
terms) in the special case where the dictionary Φ is an identity
matrix. This work was then extended in [31] to general dic-
tionary. Here, we propose to solve this problem in the special
case where the fusion term only acts on the rows of X. Ac-
cording to this specific structure it is possible to obtain a com-
putationally efficient implementation of the minimization prob-
lem using the proximal gradient method FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) [32]. However, before go-
ing further, let us give a few comments on criterion (5). In fact,
the sparsity term ||X||1,1 does not correspond to a proper convex
relaxation of ||X||0,2. As will be explained in section 3.2, the
mixed norm ||X||1,2 is more appropriate. But combining ||X||1,1
to ||DX>||1,1 yields to a kind of simultaneous sparse approxi-
mation: the simultaneity is actually enforced by the row regu-
larization term ||DX>||1,1, but there is no direct control on the
number of active rows.

Let vec(·) be the vectorization operator that converts a ma-
trix into a vector by stacking the columns of the matrix on top
of one another. We set x = vec(X>) and y = vec(Y>). Then,
criterion (5) can be rewritten as:

JFS L(x) = 1
2 ||y − Ax||22 + λ1||x||1 + λ2||Fx||1 (6)

with A = Φ ⊗ IK ∈ RNK×MK , F = IN ⊗ D ∈ RN(K−1)×NK ,
and IN denotes the N × N identity matrix. Note that (6) is also
a generalization to the multiple measurement vector setting of
the fused Lasso criterion already proposed for variable selec-
tion in spectroscopy by Malli and Natschläger [23]. To mini-
mize (6), we use FISTA which is an extension of the Nesterov’s

gradient-based method ISTA used to solve convex optimization
problems including both smooth and non-smooth terms. Let

f (x) = 1
2 ||y − Ax||22, (7)

g(x) = λ1||x||1 + λ2||Fx||1. (8)

Then, following [31], the update of vector x at iteration k + 1 is:

x(k+1) = arg min
x∈RNK

(
g(x) + L

2 ||x − v(k)||
2
2

)
(9)

where
v(k) = x(k) −

1
L∇ f (x(k)) (10)

and ∇ f (x) = A>(Ax − y) is the gradient of f (x). L is the Lips-
chitz constant of ∇ f (x). Note that the update of v(k) according
to (10) involves the calculation and storage of A>A and A>y.
Instead, to save on computational costs, we can update the ma-
trix V(k) according to:

V(k) = X(k) −
1
LΦ
>(ΦX(k) − Y), (11)

where V(k) is the matrix satisfying v(k) = vec(V>(k)). As a
consequence, only lower dimension matrices, Φ>Φ and Φ>Y,
need to be computed and stored. Solving (9) is similar to the
1D fused Lasso signal approximator (FLSA) [33]. Moreover,
due to the block diagonal structure of F, it is obvious that
||Fx||1 =

∑N
n=1 ||Dxn||1. Therefore, problem (9) can be solved

separately for each row xn of X:

xn
(k+1) = arg min

x∈RK

1
2 ||x − vn

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1. (12)

The solution to (12) is obtained by using subgradient technique.
Indeed, any solution corresponding to (λ1, λ2) is obtained by a
soft thresholding of the solution obtained for (λ1 = 0, λ2). This
is stated by the following theorem.

Theorem 1 (Friedman et al. [30], Liu et al. [34]). Let

x(λ1, λ2) = arg min
x

1
2 ||x − v||22 + λ1||x||1 + λ2||Dx||1. (13)

For all λ1, λ2 ≥ 0, we have:

x(λ1, λ2) = sign(x(0, λ2)) ∗max(|x(0, λ2)| − λ1, 0). (14)

where ∗ denotes the element-wise product operator. �

This observation is used in [30, 33] to propose algorithms for
solving the FLSA problem over a path of λ2 values, keeping
λ1 fixed (typically λ1 = 0). In our case, each problem in (12)
is solved using the FLSA routine implemented in SLEP pack-
age1. Finally, the main steps of the Fused Sparse Lasso (FSL)
algorithm are presented in Algorithm 1, where Z is a linear
combination of two consecutive estimates of X; it is updated at
each FISTA iteration.

1http://yelab.net/software/SLEP/
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Algorithm 1: Fused Sparse Lasso (FSL)

Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, maxiter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1;
2 for k ← 1 to maxiter do
3 V(k) ← Z(k) −

1
LΦ
>(ΦZ(k) − Y);

4 for n← 1 to N do
5 xn

(k) ← arg min
x

1
2 ||x − vi

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1;

6 end

7 t(k+1) ←
1+

√
1+4t2

(k)

2 ;
8 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
9 end

Output: X ∈ RN×K

3.2. Fused Sparse Group Lasso
As mentioned before, the fused sparse Lasso is not a proper

relaxation of the problem in (3). Indeed, the term ||X||1,1 does
not allow to control the number of active rows. Here, we pro-
pose to relax the `0/`2 pseudo-norm into the `1/`2 mixed norm
defined by: ||X||1,2 =

∑N
n=1 ||x

n||2, which is a particular instance
of the group Lasso penalty. So we propose the following crite-
rion:

JFS GL(x) = 1
2 ||y − Ax||22 + λ1||x||1 + λ2||Fx||1 + λ3

N∑
n=1

||xn||2,

(15)

as a convex relaxation of problem (3). Note that the ||x||1
penalty is maintained to eventually control the global sparsity
of the solution. The proximal operator associated with the com-
posite of non-smooth penalties in the fused sparse group Lasso
(FSGL) is defined as:

proxFS GL(v) = arg min
x

1
2 ||x − v||22

+ λ1
L ||x||1 + λ2

L ||Fx||1 +
λ3
L

N∑
n=1

||xn||2. (16)

Here again, it is clear that each row of X is decoupled in (16).
So we only need to solve the following optimization problem
for each row n = 1, . . . ,N:

proxFS GL(vn) = arg min
xn

1
2 ||x

n − vn||22

+ λ1
L ||x

n||1 + λ2
L ||Dxn||1 +

λ3
L ||x

n||2. (17)

Now, with the three non-smooth terms in the objective function,
the proximal operator may be computed as suggested in [35]. In
fact, the proximal operator in (17) has a decomposition property
that allows to compute it in two steps based on the following
theorem.

Theorem 2 (Zhou et al. [35]). Define

proxFS L(v) = arg min
x

1
2 ||x − v||22 + λ1||x||1 + λ2||Dx||1 (18)

proxGL(v) = arg min
x

1
2 ||x − v||22 + λ3||xn||2. (19)

Algorithm 2: Fused Sparse Group Lasso (FSGL)

Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, λ3, maxiter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1;
2 for k ← 1 to maxiter do
3 V(k) ← Z(k) −

1
LΦ
>(ΦZ(k) − Y);

4 for n← 1 to N do
5 wn

(k) ← arg min
x

1
2 ||x− vn

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1;

6 xn
(k) ← arg min

x
1
2 ||x − wn

(k)||
2
2 +

λ3
L ||x||2;

7 end

8 t(k+1) ←
1+

√
1+4t2

(k)

2 ;
9 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
10 end

Output: X ∈ RN×K

Then, the following holds for all λ1, λ2, λ3 ≥ 0:

proxFS GL(v) = (proxGL ◦ proxFS L)(v). (20)

where ◦ is the composition operator. �

This result implies that we can first compute the proximal op-
erator associated to the fused sparse Lasso as in the previous
section. The solution is then plugged in the proximal operator
associated to the group Lasso. The latter is finally computed
using the ALTRA routine also available in the SLEP package.
The resulting algorithm (FSGL) is summarized in Algorithm 2.

3.3. Nonnegative Fused Sparse Group Lasso
As we deal with positive data, it is suitable to impose a

nonnegativity constraint on the solution. Indeed, the solution
proposed above may induce artifacts due to bad conditioning
of matrices, causing the appearance of negative values. From
a physical point of view, such a solution is unacceptable and
a rigorous recovery process must take into account this addi-
tional constraint. So, we propose here to minimize the nonneg-
ative version of the fused sparse group Lasso algorithm. The
constrained problem expresses as:

minimize
x

JFS GL(x), (21a)

subject to x ≥ 0. (21b)

First, we include a slack variable u ∈ RNK to the objective func-
tion which leads to:

minimize
x

JFS GL(x), (22a)

subject to x − u = 0,u ≥ 0. (22b)

The equality constraint in (22b) can be handled by using the
quadratic penalty method [36]. The new objective in then:

JNN−FS GL(x,u) = 1
2 ||y − Ax||22 +

ξ
2 ||x − u||22

+ λ1||x||1 + λ2||Fx||1 + λ3

N∑
n=1

||xn||2, u ≥ 0 (23)
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where ξ is the parameter that penalizes the constraint violations
in the sense that, when ξ → ∞, the entries of the vector x tend
toward those of the vector u making the inequality constraint
x ≥ 0 satisfied asymptotically. The surrogate problem (23) is
unconstrained with respect to x. Hence, by stacking the two
quadratic terms of the objective J3(·) we obtain:

JNN−FS GL(x,u) = 1
2 ||y

′(u) − Bx||22 + g′(x), u ≥ 0 (24)

where B = [A>,
√
ξI>]>, y′(u) = [y>,

√
ξu>]>, I is an identity

matrix of the same size as A, and g′(x) is defined by:

g′(x) = λ1||x||1 + λ2||Fx||1 + λ3

N∑
i=1

||xi||2. (25)

We should now minimize the cost function JNN−FS GL(x,u) with
respect to x (without constraint) and u (with the nonnegativity
constraint). The minimization with respect to x leads to an iter-
ation similar to that of FSGL:v(k) = x(k) −

1
L′∇ f ′(x(k))

x(k+1) = arg min
x

1
2 ||x − v(k)||

2
2 + 1

L′ g
′(x),

(26)

where f ′(x) = 1
2 ||y

′(u) − Bx||22, ∇ f ′(x) = B>(Bx − y′(u)) and
L′ = L + ξ is the Lipschitz constant of ∇ f ′(x). Once again, the
optimization is separable for each row xn. Define matrix U such
that u = vec(U>). Replacing B and y′(u) by their expressions
yields:

V(k) = X(k) −
1
L′Φ

>(ΦX(k) − Y) − ξ
L′ (X(k) − U(`)),

xn
(k+1) = arg min

x∈RK

1
2 ||x − vn

(k)||
2
2 + λ1

L′ ||x||1 + λ2
L′ ||Dx||1 +

λ3
L′ ||x||2,

for n = 1, . . . ,N.
(27)

Hence, an external loop (`) is added to update the variable u.
The minimization of JNN−FS GL(x,u) with respect to the slack
variable u is simply a hard thresholding operation:

u(`+1) = max(0, x∗), (28)

where x∗ is the value of x(k) when the final iteration on k is com-
pleted. The tuning parameter ξ is updated in the loop with the
classical linear rule: ξ(`+1) = βξ(`), with β > 1 and ξ1 = 1. The
complete NN-FSGL algorithm is summarized in Algorithm 3.

3.4. Sofware
An open source Matlab implementation of FSL,

FSGL and NN-FSGL can be downloaded from http:

//w3.cran.univ-lorraine.fr/el-hadi.djermoune/

?q=content/publications. The software also contains a
test program and the experimental NIR data used in the next
section.

4. Wood wastes sorting

4.1. Motivations
One of the most promising application of spectroscopy and

hyperspectral imaging in industry is material sorting [37, 38,

Algorithm 3: Nonnegative Fused Sparse Group Lasso
(NN-FSGL)

Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, λ3, β, maxiter,
nniter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1, u = 0,
ξ(1) = 1;

2 for ` ← 1 to nniter do
3 L′ ← L + ξ(`);
4 for k ← 1 to maxiter do
5 V(k) ← Z(k) −

1
L′Φ

>(ΦZ(k) − Y) − ξ(`)

L′ (Z −U(`));
6 for n← 1 to N do
7 wn

(k) ←

arg min
x

1
2 ||x − vn

(k)||
2
2 + λ1

L′ ||x||1 + λ2
L′ ||Dx||1;

8 xn
(k) ← arg min

x
1
2 ||x − wn

(k)||
2
2 +

λ3
L′ ||x||2;

9 end

10 t(k+1) ←
1+

√
1+4t2

(k)

2 ;
11 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
12 end
13 u(`+1) ← max(0, x(maxiter));
14 ξ(`+1) ← βξ(`);
15 end

Output: X ∈ RN×K

39] and quality control [40, 41]. In this work, we are interested
in sorting wood wastes which have to be separated into two
broad classes: recyclable and non recyclable. Each class in-
cludes a number of wood wastes types called “groups” as given
in Table 1. The wood wastes sorting is addressed as a binary
classification of NIR spectra. A single spectrum is acquired for
each wood sample and the classifier has to decide whether it is
recyclable or not recyclable.

The goal of this section is to show the effectiveness of the
algorithms presented before in variable selection and classifi-
cation. These algorithms are primarily intended at selecting
the explanatory variables used in classifiers. Here we restrict
our attention to the kernel SVM classifier which proved to be
among the most effective for the considered problem, and the
question at hand is: is it possible to improve the classification
rates and decrease the computational burden by performing a
proper variable selection?

4.2. Data acquisition and pre-processing

We collected several hundred samples of wood in a waste
park amongst which 290 were gathered by experts into 11 la-
beled groups as shown in Table 1. The data acquisition was
carried in reflectance mode on a Nicolet 8700 FTIR spectrom-
eter equipped with a MCT detector and a CaF2 beam split-
ter. Near infrared reflectance spectra cover the spectral range
[3562, 10000] cm−1 (corresponding to [1000, 2800] nm). The
spectral resolution is 16 cm−1. The spectral sampling step is
4 cm−1 yielding 1647 spectral bands. Each spectrum is obtained
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Table 1: Composition of the two classes of wood wastes

(a) Class 0: recyclable

Group Type Samples
0.1 raw wood 32
0.2 painted solid wood 36
0.3 varnished solid wood 35
0.4 raw plywood 18
0.5 varnished plywood 18
0.6 raw particle board 28
0.7 painted particle board 6

(b) Class 1: non-recyclable

Group Type Samples
1.1 raw wood metallic salts 35
1.2 MDF-HDF 28
1.3 painted MDF-HDF 50
1.4 raw fiber board 8

by averaging 100 scans. The data pre-processing includes base-
line removal using the method proposed in [42], offset correc-
tion ensuring zero lower bound, and unit energy normalization.
Some spectra from these different groups are shown in Figure 2.
It appears that the discriminant features cannot be determined
by a simple visual examination.

The data are then gathered in matrix Y ∈ R1647×290. Note
that the spectra are ordered according to the group they belong
to. The spectra from class 0 are put in the first columns of Y
starting from group 0.1 through group 0.7. In the same manner,
the spectra from class 1 are put in the last columns. This is a
very important point since it is this ordering which enables the
rows of the coefficient matrix X to be piecewise constant when
λ2 > 0.

4.3. Dictionary
The dictionary Φ is composed of normalized Gaussian-

shaped functions whose means mi ∈ [3660, 10000] cm−1 and
widthsσ j ∈ [30, 600] cm−1 are covering uniformly their respec-
tive intervals. The discretization leads to 20 different values for
σ j. For each σ j, the interval [3660, 10000] cm−1 is discretized
such that two adjacent mi’s are separated by σ j. As a conse-
quence, the dictionary is composed of 773 atoms with mutual
coherence 0.9995.

4.4. Variable selection
Here we compare FSL and FSGL to the simultaneous vari-

able selection algorithm (SVS) proposed by Turlach et al. [22]).
This algorithm is an extension of Lasso strategy and corre-
sponds to the following optimization problem:

min
X

1
2 ||Y −ΦX||2F s. t.

N∑
n=1

||xn||∞ ≤ t, (29)

where t is a user parameter controlling the sparsity of the solu-
tion. The problem is solved using an interior point method and
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(b) Class 1: non-recyclable

Figure 2: Some (pre-processed) NIR spectra from the two classes of wood
wastes.

the C implementation is kindly provided by the author (Berwin
A. Turlach).

Figure 3 displays the selected variables obtained by SVS,
FSL and FSGL for some values of t, 1/λ1 and 1/λ3, respec-
tively. Note that the number of active variables returned by
SVS increases when t increases whereas, for FSL and FSGL, it
decreases when λ1 or λ3 increases. The horizontal lines connect
two adjacent values of the parameters when the coefficient as-
sociated to a selected variable does not vanish. For small values
of t, 1/λ1 and 1/λ3, the variables are mainly picked in the range
[6600, 6700] cm−1 where broad and intense spectral peaks are
observed (see Fig. 2). By increasing the value of these param-
eters, more and more variables are selected. In a given appli-
cation, the practitioner can stop the selection when the desired
number of variables is reached. In our case, out of about fourty
variables (with t = 2, λ1 = 0.045 and λ3 = 0.35), SVS shares 28
common variables with FSL and FSGL. The latter algorithms
share 38 common variables. It can also be seen that some
wavenumbers actually have a chemical interpretation. For in-
stance, the variables located in the ranges 4000-4500 cm−1 and
5800-8200 cm−1 are related to the main components of wood
including cellulose, hemicellulose and and lignin [43, 44].

The computational time required by each algorithm to per-
form variable selection is reported in Table 2. The results are
obtained using a 2.4 Ghz Intel Core i5 processor with 8 Giga-
bytes of RAM. We note that FSL is generally faster than all
other approaches. FSGL algorithm is a bit slower. The addi-
tional loop with hard thresholding operator makes NN-FSGL
about ten times time demanding than its unconstrained version.
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(b) FSL (λ2 = 0.5)
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(c) FSGL (λ1 = 0, λ2 = 0.5)

Figure 3: Selected variables versus tuning parameters.

Table 2: Computational time (in seconds) of the different approaches for vari-
able selection

# Variables FSL FSGL NN-FSGL G-SVM
25 9 17 110 27
32 9 17 101 27
40 10 15 112 29
50 9 12 105 31

For SVS we did not try all the configurations because we found
that this algorithm is much more slower and needs about four
hours to select 32 variables. Finally, FSL and FSGL algorithms
are not only numerically efficient but also provide good classi-
fication rates as will be shown in the next paragraph.

4.5. Classification of wood wastes using NIR spectra

Here we perform classification of recyclable and non-
recyclable wood samples using SVM with quadratic kernel
function. All variable selection algorithms are tuned to pro-
duce 32 spectral bands. Classification is then performed using
matrix X corresponding to the unconstrained least-squares so-
lution of equation (2a) where dictionary Φ is restricted to the
32 active atoms. The results are compared to SVM classifica-
tion without variables selection (i.e. using the original data in
Y) and G-SVM [45]. The latter algorithm consists in solving
an augmented SVM criterion where the sparsity constraint is
imposed on the support vectors. The solution is computed us-
ing a projected gradient method. In G-SVM, the sparsity of the

support vectors is controlled by parameter2 C which is set to
C = 150 making the decision rule made on 32 coefficients of
the support vectors.

The classification results for 10 cross validation runs are
shown in Table 3. For each method we report the overall rate
of success, the true positive rate TPR (rate of recyclable sam-
ples correctly identified), and the true negative rate TNR (rate
of non-recyclable samples correctly rejected). In terms of total
accuracy, FSL, FSGL ad NN-FSGL clearly outperform SVM,
SVS and G-SVM. The best result is about 88% obtained with
FSGL. As in our application it is also important to reject the
maximum number of polluted samples from the recycling pro-
cess, the best parameters for FSGL are λ1 = 0, λ2 = 0.5 and
λ3 = 0.625 (see also section 4.6). Figure 4 shows an example
of error rates resulting in each group of wood wastes when the
spectra are randomly split into training samples (203 spectra)
and test ones (87 spectra). The results obtained using the vari-
ables selected by FSGL are: TPR = 87.3%, TNR = 94.4%,
and an overall rate of success of 89.7%. One can see that the
two pieces of painted particle boards are misclassified. This
is mainly due to (i) the small number of samples in the cor-
responding group: only 4 samples are used for training and 2
for the test; (ii) the presence of painted wood samples in both
classes.

4.6. Parameter adjustment
The performances of all the algorithms considered here de-

pend on the choice of tuning parameters. For instance, the set

2http://remi.flamary.com/soft/soft-gsvm.html
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Table 3: Wood wastes classification accuracy using SVM
Variable selection algorithm Classifier Number of variables Parameters Accuracy

λ1 λ2 λ3 Success TPR TNR
– SVM 1647 – 82.2% 80.4% 84.8%
G-SVM 32 C = 150 76.9% 81.4% 71.3%
SVS SVM 32 t = 1.75 84.1% 83.1% 85.6%
FSL SVM 32 0.075 0.5 – 85.9% 85.6% 86.3%

FSGL SVM 32 0 0.5 0.625 87.8% 86.1% 90.3%
32 0.04 0.2 0.295 86.5% 86.4% 86.7%

NN-FSGL SVM 32 0 0.5 0.6 86.9% 85.5% 88.8%
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Figure 4: An example of classification error rate in each group. The dataset is
randomly split into training samples (70%) and test samples (30%).

of selected variables (and thus, the overall classification perfor-
mance) with FSGL depend on λ1, λ2 and λ3. Our aim now is
to evaluate the impact of each parameter on the number of se-
lected variables and classification rates using 10-fold cross val-
idation. For λ2 = 0.2 and without the group penalty (λ3 = 0),
the results in terms of total classification error and cardinality
of the support are reported in Figure 5(a), for several values
of λ1. We note that the classification error rate decreases from
35% (λ1 = 10−2) to 14% (λ1 ∈ [0.18, 0.28]). Naturally, the
performances degrade drastically for values of λ1 beyond 0.3
which correspond to less than 20 variables. For λ2 = 0.5 and
without the sparsity term (λ1 = 0), the results are shown on Fig-
ure 5(b), for different values of the grouping parameter λ3. We
observe that the total classification error rate is under 15% for
λ3 ∈ [0.1, 1.5]. In particular the value of λ3 yielding the lowest
error rate (12.2%) is shown in Table 3 with 32 spectral bands. It
is worth to notice from these two experiments that both sparsity
and grouping parameters act directly on the number of selected
variables but not with the same intensity: the sparsity param-
eter has stronger influence than the grouping parameter. For
instance, to obtain less than 80 variables, the grouping parame-
ter should be set to 0.2 (and λ1 = 0) while the same number of
variables is obtained for λ1 ≈ 0.06 (and λ3 = 0). To analyse the
effect of the fusion parameter on the general classification per-
formances, we set the sparsity parameter λ1 to 0 and vary both
the grouping and the fusion parameters such that 40 variables

are retained. The results are reported on Figure 5(c). The error
rate is less than 15% in the range λ2 ∈ [0.1, 0.6]. The minimum
value of the classification error rate is 11.6%; it corresponds to
λ2 = 0.55.

5. Conclusion

In this paper, simultaneous regularized sparse approxima-
tion algorithms for variable selection are proposed. The first
idea of this work is to reduce data dimensionality of NIR spectra
using sparse decomposition. Moreover, to improve the classifi-
cation performances, we incorporate a regularization constraint
along the rows of the coefficient matrix to enforce a piecewise
constant form. This is done by applying a `1-norm penalty on
the difference between successive coefficients. The correspond-
ing algorithm is the sparse fused Lasso. Using a FISTA itera-
tion, we have shown that the criterion may be solved efficiently
thanks to the fused Lasso signal approximator (FLSA) applied
on each row of the coefficient matrix. Additional penalties have
also been incorporated to the criterion to enforce simultaneous
selection and non-negativity of the solution. The resulting al-
gorithms have a low computational cost suitable for large-scale
problems. The effectiveness of the algorithms is demonstrated
on real NIR spectra both in terms of variable selection and clas-
sification performance.
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