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Perturbation Analysis of Subspace-Based Methods in
Estimating a Damped Complex Exponential

El-Hadi Djermoune* and Marc Tomczak

Abstract—We present a study of mode variance statistics for three
SVD-based estimation methods in the case of a single-mode damped
exponential. The methods considered are namely Kumaresan-Tufts,
matrix pencil and Kung’s direct data approximation. Throug h first-
order perturbation analysis, we derive closed-form expressions of the
variance of the complex mode, frequency and damping factor estimates.
These expressions are used to compare the different methodsand to
determine the optimal prediction order for matrix pencil an d direct data
approximation methods. Application to the undamped case shows the
coherence of the results with those already stated in the literature. It is
also found that the variances converge linearly towards theCramér-Rao
bound. Finally, the theoretical results are verified using Monte Carlo
simulations.

Index Terms—Damped exponential model, direct data approximation,
linear prediction, matrix pencil, perturbation analysis.

I. I NTRODUCTION

T HE question of estimating model parameters of exponential
signals in noise is a fundamental problem in signal processing.

It has applications in several areas, including array processing, radar
scattering, and nuclear magnetic resonance spectroscopy.In this
context, several algorithms have been developed, including maximum
likelihood approaches [1], [2] and subspace-based methodssuch as
MUSIC [3], [4], backward linear prediction (BLP) [5], state-space
[6], ESPRIT [7], and matrix pencil (MP) [8]. Statistical performances
of these methods, at high signal-to-noise ratio (SNR), havealso
been extensively studied in the case of pure sinusoids [4], [9]–[14]
and damped ones [15]–[18]. Most of these analyses are based on
perturbation theory. For instance, Okhovatet al. [16] have studied
BLP and direct data approximation (DDA) [6] methods, in the case
of a single damped mode. The achieved expressions of variance come
in the form of multiple sums, which is not very convenient. In[17],
the authors consider the multimodal damped case using BLP. The
resulting matrix expression is compact but does not give much insight
about the actual performances. Finally, in [8], the MP method is
studied in the multiple mode case. Here again, the variancescome
in the form of matrix expressions. However, the performances of the
method have been clearly stated as closed-form expressionsin the
case of a single undamped exponential.

In a manner similar to [16], [17], the present work uses Wilkinson’s
approach [19] to derive the expressions of the mode variance. The
three methods discussed previously are studied in the case of a single
noisy damped complex exponential. The first technique considered is
the popular Kumaresan-Tufts method [5]. It performs a reduced rank
pseudoinverse of a data matrix to get backward linear prediction
coefficients, from which the signal modes are obtained through
polynomial rooting. The matrix pencil method, introduced by Hua
and Sarkar [8], is based on a matrix prediction equation in which the
data matrices have a Hankel structure similar to that found in BLP.
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The last method considered here is Kung’s state-space direct data ap-
proximation method [6]. As will be seen in Section II, subspace-based
methods that operate directly on data share a common step which
amounts to find a reduced rank pseudoinverse of a data matrix.So
the three aforementioned methods are studied in Section III, starting
from the first-order perturbation analysis of the singular values and
vectors, assuming a high SNR. Then, in Section IV, it is shownthat
these estimators are unbiased. Furthermore, closed-form expressions
of the variance of the complex mode and the corresponding frequency
and damping factor are derived. This enables us to establishthe
expression of the optimal tuning parameter of MP and DDA. In
order to check the consistency of our results with those stated in the
literature, the known equivalence between MP and DDA, for a first-
order approximation, is shown again using the approach chosen. In
the same manner, the frequency variance expression for an undamped
exponential is given. In Section V, we demonstrate the superiority of
MP and DDA over BLP in the single damped/undamped mode case,
and we prove the convergence of the variances towards the Cramér-
Rao bound. Finally, in Section VI, simulation results are presented
to verify the theoretical expressions.

II. ESTIMATION METHODS

The noise-perturbed exponential signal model is given by

x̃(n) = x(n) + e(n) =
M

X

i=1

aip
n
i + e(n) (1)

for n = 0, · · · , N − 1. Here pi = exp(αi + jωi) = ri exp(jωi),
i = 1, · · · , M are the signal modes (αi < 0 and ri < 1) with
complex amplitudesai = Ai exp(jφi). The terme(n) is a zero-
mean complex white Gaussian noise with varianceσ2

e ; so the real and
imaginary parts ofe(n) are assumed to be independent and of equal
variances. Model (1) is used in this section to present the principles of
the estimation techniques considered. Then, for perturbation analysis,
we consider only the single-mode case, i.e.M = 1, and we use the
following signal model instead of model (1):

x̃(n) = x(n) + e(n) = apn + e(n). (2)

Throughout this paper, the notatioñX refers to the noisy or perturbed
version of the quantityX, i.e. X̃ = X + ∆X, whereX is a scalar
or matrix and∆X the error term (or noise). Matrices are denoted by
bold capital letters and vectors by bold lowercase letters.

A. BLP Method

The BLP method [5] is based on backward linear prediction and
uses a reduced rank approximation of the data matrix in orderto
decrease noise influence. It is made up of the following steps:

1) Using the available data, form the system of equations

X̃1b̃ ≈ −x̃0 (3)

where X̃1 = [x̃1, x̃2, · · · , x̃L] and x̃k = [x̃(k), x̃(k +
1), · · · , x̃(N − L − 1 + k)]T for k = 0, · · · , L. The vector
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b̃ contains the prediction coefficients{b̃i}L
i=1, andL ≥ M is

the prediction order.
2) Perform the singular value decomposition (SVD) of matrix

X̃1 and set to 0 all but the firstM largest singular values.
The resulting matrix, denoted bŷX1, is the best rankM
approximation ofX̃1 in the Frobenius norm sense.

3) Compute the prediction vector estimateb̃ using the reduced
rank pseudoinverse of̃X1:

b̃ = −X̂
+
1 x̃0 (4)

where the superscript “+” denotes the Moore-Penrose pseu-
doinverse.

4) Obtain the roots{z̃i}L
i=1 of the polynomial B̃(z) = 1 +

PL
i=1 b̃iz

−i =
QL

i=1(1− z̃iz
−1), and then select those located

outside the unit circle. They correspond to the inverse of signal
modes (i.e.̃pi = 1/z̃i for i = 1, · · · , M ).

B. Matrix Pencil Method

For damped sinusoids, Hua and Sarkar’s matrix pencil method[8]
consists of the following steps:

1) Form two matricesX̃0 and X̃1. The matrixX̃1 is the same
as before andX̃0 is a shifted version of the latter:̃X0 =
[x̃0, x̃1, · · · , x̃L−1].

2) Compute the low rank approximation̂X1 of X̃1 using, as
before, the SVD.

3) As for BLP, compute the reduced rank pseudoinverse ofX̃1 to
obtain the matrix estimatẽZ:

Z̃ = X̂
+
1 X̃0. (5)

4) The estimates of the modes are the inverse of theM eigenvalues
of Z̃ lying outside the unit circle.

C. DDA Method

The DDA method by Kunget al. [6] is based on state-space
formalism. The signalx(n) is seen as the free response of a linear
system with transition matrixF having eigenvalues which are the
signal modes. So, the problem is to estimate the matrixF, which
can be done as follows:

1) Form the data matrix̃X = [x̃0, x̃1, · · · , x̃L].
2) Obtain its SVD which is partitioned as follows:

X̃ = Ũ
′
S̃
′
Ṽ

′H =
ˆ

Ũ′
1 Ũ′

2

˜

»

S̃′
1 0

0 S̃′
2

– »

Ṽ′H
1

Ṽ′H
2

–

(6)
where S̃′ is a diagonal matrix containing the singular values
of X̃ ordered in non-increasing fashion, andS̃′

1 is an M -by-
M diagonal matrix. The superscript “H” denotes the conjugate
transpose.

3) Estimate the observability matrix

Θ̃ = Ũ
′
1S̃

′1/2
1 . (7)

An estimate ofF is then given by

F̃ = Θ̃
+
1 Θ̃2 (8)

whereΘ̃1 (resp.Θ̃2) is deduced fromΘ̃ by eliminating the
last (resp. the first) row.

4) TheM eigenvalues of̃F are the estimated modes.

III. S INGULAR VALUE AND SINGULAR VECTORPERTURBATIONS

All the methods presented before use the reduced rank pseudoin-
verse of data matrices (X̃1 and X̃). So we start our study with
the perturbation in the singular values and vectors ofX̃1 and X̃

for M = 1. We denoteX̃1 = X1 + E1, whereX1 and E1 are
constructed as̃X1 using x(n) and e(n) respectively. The notations
X̃0 = X0+E0, X̃ = X+E, andx̃0 = x0+e0 are defined similarly.

A. Matrix X̃1

In can be shown that the noiseless data matrixX1 is rank
1 and its SVD is X1 = σ1u1v

H
1 , where σ1 = Ar

√
kvku,

u1 = ejφ
√

ku
[1, p, · · · , pN−L−1]T , v1 = e−jω

√
kv

[1, p∗, · · · , p∗L−1]T ,

kv =
PL−1

i=0 r2i, and ku =
PN−L−1

i=0 r2i. The singular valueσ1

is the square-root of the unique non-zero eigenvalue of the matrix
XH

1 X1, associated to the eigenvectorv1. In the noisy case, we have

X̃
H
1 X̃1 = X

H
1 X1 + (EH

1 E1 + E
H
1 X1 + X

H
1 E1). (9)

At high SNR, the first-order perturbation of the eigenvalueσ2
1 of

XH
1 X1 is given by [19]:

∆σ2
1 = v

H
1 (EH

1 X1 + X
H
1 E1)v1 = σ1(v

H
1 E

H
1 u1 + u

H
1 E1v1).

(10)

B. Matrix X̃

The singular value decomposition ofX is given byX = σ′
1u

′
1v

′H
1 ,

where σ′
1 = Ar

√
kv′ku′ , u′

1 = ejφ√
ku′

[1, p, · · · , pL]T , v′
1 =

e−jω√
kv′

[1, p∗, · · · , p∗N−L−1]T , kv′ =
PN−L−1

i=0 r2i, and ku′ =
PL

i=0 r2i. In the case of DDA, we also need the expression of the
first-order perturbation of the singular vectoru′

1. Let ũ′
1 = u′

1+∆u′
1,

then [19]:

∆u
′
1 =

1

σ′
1

L+1
X

i=2

(u′H
i Ev

′
1)u

′
i =

1

σ′
1

L+1
X

i=2

γiu
′
i. (11)

where{u′
i}L+1

i=1 is the set of left-singular vectors of the data matrix
X, whose noisy counterparts are given by the columns of matrixŨ′

in (6).

IV. A NALYSIS OF THE ESTIMATION METHODS

A. BLP Method

At high SNR, matrixX̃1 is approximately rank 1, thus [16]

X̂
+
1 ≈ X̃H

1

σ̃2
1

. (12)

From (4), we can deduce that

b̃ ≈ − 1

σ̃2
1

X̃
H
1 x̃0. (13)

Sinceb̃ = b+∆b, andb = −1
r
√

kv
v1, the first-order perturbation of

b is

∆b = − 1

σ2
1

(XH
1 e0 + E

H
1 x0 + b∆σ2

1). (14)

The error ∆b in the prediction coefficients induces a shifting of
the rootz1 = 1/p of the polynomialB(z) towards a new position
z̃1 = z1 + ∆z1, where [20]:

∆z1 = −
L

X

k=1

zL−k
1

QL
i=2(z1 − zi)

∆bk (15)
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and{zi}L
i=2 are the zeros of the polynomialB(z) which are different

from z1. Let β1 =
QL

i=2(z1 − zi) = 1
pL−1

kv−Lr2L

1−r2L and g1 =

[zL−1
1 , zL−2

1 , · · · , 1]H = r
√

kv

p∗L v1, then (15) may be rewritten as

∆z1 = − 1

β1
g

H
1 ∆b = −r

√
kv

β1pL
v

H
1 ∆b. (16)

After some straightforward calculations using (16) and (14), we
finally obtain:

∆z1 =
1

σ1β1pL
u

H
1 (r

√
kve0 − E1v1). (17)

It can be seen that the estimatez̃1 is unbiased sinceE {∆z1} = 0.
Since z̃1 = 1/p̃ = (α̃ + jω̃)−1, we obtain using a first-order series
expansion∆z1 ≈ −(∆α + j∆ω)/p. Hence the estimates̃α and ω̃
are also unbiased:E {∆α} = E {∆ω} = 0. Now, using the fact
that e(n) is zero-mean uncorrelated complex noise and after some
lengthy calculations, it can be shown thatE

˘

(∆z1)
2
¯

= 0, and

E
˘

|∆z1|2
¯

=
A2σ2

e

σ4
1r2

„

1 − r2L

kv − Lr2L

«2

(r4k2
vku + s2 − 2r2kvs1)

(18)
with s1 =

Pm−1
i=0 ir2i + m

PN−L−1
i=m r2i, s2 =

Pm−1
i=0 i2r2i +

m2 PN−m−1
i=m r2i+

PN−1
i=N−m(N−i)2r2i, andm = min{L, N−L}.

Moreover,var (∆α) = var (∆ω) = r2

2
E

˘

|∆z1|2
¯

, which implies:

var (∆ω) =
σ2

e

2A2k2
vk2

ur4

„

1 − r2L

kv − Lr2L

«2
`

r4k2
vku + s2 − 2r2kvs1

´

.

(19)
Finally, replacing all the sums leads to expression (23) given at the
bottom of the page. This new result is interesting since it iseasily
exploitable. Namely, it may be used to compare the performances
of BLP to MP and DDA under the assumption of high SNR.
This will be done in Section V. For the particular case of an
undamped sinusoid (r = 1), the frequency variance reduces to:
var (∆ω) =

σ2
e

A2

2(2L+1)

3L(L+1)(N−L)2
if L ≤ N/2 and var (∆ω) =

σ2
e

A2

2[−(N−L)2+3L2+3L+1]

3L2(L+1)2(N−L)
if L ≥ N/2, which is consistent with the

results in [8], [14].

B. Matrix Pencil Method

Starting from (5) and (12), and using the fact thatX̃0 = X0 +E0,
we obtain the following expression:

∆Z = Z̃ − Z ≈ 1

σ2
1

(−Z∆σ2
1 + X

H
1 E0 + E

H
1 X0). (20)

The first-order perturbation of the eigenvaluez1 of the matrixZ is
then [19]

∆z1 =
1

σ2
1

v
H
1 (−Z∆σ2

1 + X
H
1 E0 + E

H
1 X0)v1. (21)

As Z = 1
p
v1v

H
1 , replacing∆σ2

1 by its expression in (10), we get

∆z1 =
1

σ1p
u

H
1 (pE0 − E1)v1. (22)

Applying mathematical expectation, it leads toE {∆z1} = 0,
which implies that the estimates̃α and ω̃ are unbiased:E {∆α} =

E {∆ω} = 0. As for BLP, it can also be shown thatE
˘

(∆z1)
2
¯

= 0,
and

E
˘

|∆z1|2
¯

=
A2σ2

e

σ4
1r2

`

(1 + r2)s2 − 2r2s′2
´

(24)

where s′2 = s2 +
Pm−1

i=0 ir2i − PN−1
i=N−m(N − i)r2i. Thus

var (∆α) = var (∆ω), with:

var (∆ω) =
σ2

e

2A2k2
vk2

ur4

`

(1 + r2)s2 − 2r2s′2
´

. (25)

Again, replacing all the sums leads to:

var (∆ω) =
σ2

e(1 − r2)3

2A2r2
×

(

1+r2N−2L

(1−r2N−2L)2(1−r2L)
if L ≤ N/2

1+r2L

(1−r2N−2L)(1−r2L)2
if L ≥ N/2

(26)
We observe thatvar (∆ω) is a rational function inr2L, so it is
possible here to obtain the optimal value ofL for which the variance
is minimized. For instance, forL ≤ N/2, the first derivative of
var (∆ω) with respect tot = r2L is zero when:

t3 + 3r2N t2 − 3r2N t − r4N = 0. (27)

This is a cubic equation int which may be solved analytically using,
for example, Cardano’s formula [21]. The value oft is found to be
t = rN/ tan((π − tan−1 r−N)/3), which implies

Lmin =
N

2
− 1

2 ln r
ln

„

tan
π − tan−1 r−N

3

«

. (28)

One special case of interest is whenr = 1, for which we obtain the
well-known optimal value for an undamped sinusoid:Lmin = N/3.
On the contrary, whenr tends towards zero, we are confronted with
a damped wave with a strong damping. In the latter case,Lmin tends
towardsN/2. This value is also reached asymptotically (asN → ∞),
for anyr < 1. So the optimal value ofL lies betweenN/3 andN/2
and approachesN/2 as the damping factor increases. Of course, since
var (∆ω) is symmetric aboutL = N/2 and assumingN even, the
variance reaches the same minimum atN − Lmin.

Finally, the variance in the undamped case may be derived easily
from (26), and corresponds to the one presented in [8]:var (∆ω) =
σ2

e

A2

1
(N−L)2L

if L ≤ N/2 andvar (∆ω) =
σ2

e

A2

1
(N−L)L2 if L ≥ N/2.

C. DDA Method

In the single mode case, the matricesΘ̃1 andΘ̃2 in (8) are vectors.
The pseudoinverse of̃Θ1 is thenΘ̃+

1 = 1
κ̃
Θ̃H

1 , in which κ̃ = ||Θ̃1||2.
Let κ̃ = κ + ∆κ, the perturbation ofκ is then

∆κ = Θ
H
1 ∆Θ1 + ∆Θ

H
1 Θ1 (29)

from which we get

Θ̃
+
1 ≈ Θ

+
1 +

1

κ
(∆Θ

H
1 − 1

κ
Θ

H
1 ∆κ). (30)

Then, using (8) and according to (29), the following expression of
the perturbation ofF (which in our case equals the scalarp) can be
derived:

∆p =
1

κ
Θ

H
1 (∆Θ2 − p∆Θ1). (31)

Since S̃′
1 in (7) is a scalar, it simplifies itself in (8). Consequently,

one may simply choosẽΘ = ũ′
1 (and Θ = u′

1), which leads

var (∆ω) =
σ2

e(1 − r2)3

2A2r2
×

8

<

:

(1+r2N−2L)[1−(2L+1)(1−r2)r2L−r4L+2]

(1−r2N−2L)2[1−r2L−L(1−r2)r2L]2
if L ≤ N/2

(1−r2N−2L)(1+r2L)(1+r2L+2)−2(N−L)(1−r2)(1+r2N−2L)r2L

(1−r2N−2L)2[1−r2L−L(1−r2)r2L]2
if L ≥ N/2

(23)
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to E {∆p} = 0 in view of (11). Therefore, the estimates of the
frequency and the damping factor are also unbiased. After some
simplifications, we getE

˘

(∆p)2
¯

= 0, and

E
˘

|∆p|2
¯

=
σ2

e

κ2A2k2
v′k2

u′r2

`

(1 + r2)s2 − 2r2s′2
´

. (32)

Finally, using the fact thatvar (∆α) = var (∆ω) = 1
2r2 E

˘

|∆p|2
¯

,
κ = kv/ku′ andkv′ = ku, we obtain:

var (∆ω) =
σ2

e

2A2k2
vk2

ur4

`

(1 + r2)s2 − 2r2s′2
´

. (33)

From to (33) and (25), it appears that DDA and MP are equivalent
for a first-order approximation. Of course, this result had already
been established in [22] for the general case ofM ≥ 1 exponentials,
using a different approach. So all the properties demonstrated before
on MP are also valid for DDA.

V. PERFORMANCECOMPARISON AND CONVERGENCE TO THE

CRAMÉR-RAO BOUND

Here we demonstrate the superiority of MP and DDA over BLP,
for a first-order approximation. Then, we discuss the asymptotic
convergence of all the variances towards the Cramér-Rao lower
Bound (CRB).

Proposition 1 For all r ∈ (0, 1] and 1 ≤ L ≤ N − 1, the frequency
variance achieved by BLP is at least equal to that obtained byMP
and DDA for a first-order approximation, that is:

var (∆ω)BLP ≥ var (∆ω)MP = var (∆ω)DDA . (34)

Proof: See Appendix A.
This result was already established in the case of a single pure
sinusoid (see e.g. [8]) and is now proven in the damped case.

For any unbiased estimator of the frequency and the damping
factor, under the assumption of a single exponential model,the CRB
is given by [23]:

CRB(α) = CRB(ω) =
σ2

e

2A2

(1 − r2)3(1 − r2N )

r2(1 − r2N )2 − N2r2N (1 − r2)2
.

(35)
As N → ∞, the convergence of all the previous estimation variances
towards the CRB is obvious in view of (23), (26) and (35), for any
given value ofL such thatL = µN , µ ∈ (0, 1), provided thatr < 1.
The following proposition gives the rate of convergence.

Proposition 2 Let εN be the deviation of one of the variances in
(23), (26) or (33) from the CRB:εN = var (∆ω)−CRB(ω). Then,
∀r ∈ (0, 1) andL = µN , µ ∈ (0, 1), εN converges linearly towards
zero with the following rates:

lim
N→∞

εN+1

εN
=

(

r2µ if µ ∈ (0, 1/2]

r2(1−µ) if µ ∈ [1/2, 1).
(36)

Proof: See Appendix B.
Proposition 2 gives the rate of convergence to the CRB ifL is chosen
such thatL = µN . For instance, the rate of convergence isr for
L = N/2, and r2/3 for L ∈ {N/3, 2N/3}. In the same manner,
it can be shown that, for the particular case of MP and DDA, the
minimum variance corresponding toLmin in (28) converges to the
CRB with rater.
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Fig. 1. Theoretical and empirical MSEs for BLP, MP and DDA versus
prediction order (SNR= 40 dB).
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Fig. 2. Theoretical and empirical MSEs for BLP, MP and DDA versus SNR
(L = 10).

VI. N UMERICAL SIMULATIONS

We consider a signal composed of one damped exponential with
parametersα = −0.1, ω = 0.2, andN = 30. The peak SNR is fixed
to 40 dB: 10 log(A2/σ2

e) = 40. Fig. 1 shows the theoretical and
sample mean square errors (MSEs) obtained from 1,000 realizations
of additive noise for BLP, MP and DDA, together with the CRB. It
can be seen that the theoretical MSEs are close to the estimated ones.
Moreover, it appears clearly, as demonstrated analytically before, that
MP and DDA perform better than BLP. Note that this result is valid
whatever the value of the damping, assuming a sufficiently high SNR.
We also observe that the minimum MSE for MP and DDA is attained
atL = 12 andL = 18, which correspond to the values obtained from
expression (28):Lmin = 12.44 andN − Lmin = 17.66.

For the second example, the same signal is used but the SNR is
now varying. The prediction order is set toL = 10. The results
achieved are given in Fig. 2. Here we observe that the theoretical
expressions of the variance are valid beyond a threshold SNR, which
in this case is about 8 dB. Of course, this is not a rule of thumb
because, in fact, it also depends on the damping factor.
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VII. C ONCLUSION

In this paper, we have presented a first-order perturbation analysis
of three subspace-based techniques operating directly on the data:
Kumaresan-Tufts, matrix pencil and direct data approximation, in the
case of a single damped exponential. We have derived the analytical
closed-form expressions of the mode, frequency and dampingfactor
variances. Thanks to these expressions, we have shown that MP and
DDA perform better than BLP. Moreover, we have found the optimal
prediction order for MP and DDA. In fact, this order depends not only
on the number of samples but also on the damping, which is unknown.
So, in practice, an appropriate value will lie betweenN/3 andN/2,
the latter being preferable for a strongly damped sinusoid.Note that,
unless some restrictive hypotheses on the signal parameters are stated,
the expression of the optimal prediction order cannot be found for
BLP, due to the nonlinear aspect of the underlying problem. The
extension of the results to the multimodal case is possible provided
that the modes are separated enough and the damping factors are of
the same order of magnitude.

APPENDIX A
PROOF OFPROPOSITION1

Here we prove (34) forr ∈ (0, 1). The caser = 1 is simple and
will not be considered. ForL ≤ N/2, the ratio of BLP and MP
variances is

var (∆ω)BLP

var (∆ω)MP
− 1 = r2L r2(1 − r2L)2 − L2(1 − r2)2r2L

[1 − r2L − L(1 − r2)r2L]2
. (37)

Since
PL−1

i=0 r2i = (1 − r2L)/(1 − r2) and
QL−1

i=0 r2i = rL(L−1),
using the arithmetic mean–geometric mean inequality, we obtain (1−
r2L) ≥ L(1 − r2)rL−1. Thusr2(1 − r2L)2 ≥ L2(1 − r2)2r2L.

For L ≥ N/2, the ratio of BLP and MP variances is

var (∆ω)BLP

var (∆ω)MP
− 1 =

r2L(1 + r2L)[r2(1 − r2L)2 + 2L(1 − r2)(1 − r2L) − L2(1 − r2)2r2L]

(1 + r2L)[1 − r2L − L(1 − r2)r2L]2

− 2r2L(N − L)(1 − r2)(1 + r2N−2L)(1 − r2L)2

(1 − r2N−2L)(1 + r2L)[1 − r2L − L(1 − r2)r2L]2
. (38)

Using, once again, the arithmetic mean–geometric mean inequality
on the sequence{r2n}L−1

n=0 , it yieldsL2(1−r2)2r2L ≤ r2(1−r2L)2,
so

var (∆ω)BLP

var (∆ω)MP
− 1 ≥ 2r2L(1 − r2)(1 − r2L)2

(1 + r2L)[1 − r2L − L(1 − r2)r2L]2

×
»

L(1 + r2L)

1 − r2L
− (N − L)(1 + r2N−2L)

1 − r2N−2L

–

. (39)

It can be shown that the sequencewn(r) = n(1 + r2n)/(1 − r2n),
n ≥ 1, increases for allr ∈ (0, 1). So, using the fact thatL ≥
N − L, we obtainwL(r) ≥ wN−L(r), which completes the proof
of Proposition 1.

APPENDIX B
PROOF OFPROPOSITION2

In this appendix, we demonstrate the linear convergence of the
variance towards the CRB for the MP method with parameterL =
µN such that0 < µ ≤ 1/2. For L ≤ N/2, we have:

εN =
σ2

e(1 − r2)3

2A2r2

× WN

(1 − r2(1−µ)N )2(1 − r2µN )[r2(1 − r2N)2 − N2r2N (1 − r2)2]
(40)

whereεN = var (∆ω) − CRB(ω), and

WN = r2µN
n

r2(1 − r2N )
ˆ

1 − r2(1−2µ)N (3 + 3r2µN + r2(1−µ)N ˜

−N2r2(1−µ)N (1 + r2(1−µ)N )
o

. (41)

Sinceµ ≤ 1/2, it is easy to see thatεN → 0 asN → ∞, ∀r ∈ (0, 1).
The rate of convergence is then

ρ = lim
N→∞

εN+1

εN
= lim

N→∞

WN+1

WN
= lim

N→∞

r2µ(N+1)

r2µN
= r2µ. (42)

This shows that the convergence is linear sinceρ ∈ (0, 1). The cases
of BLP andµ > 1/2 may be proved similarly.
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