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Perturbation Analysis of Subspace-Based Methods in
Estimating a Damped Complex Exponential

El-Hadi Djermoune* and Marc Tomczak

Abstract—We present a study of mode variance statistics for three
SVD-based estimation methods in the case of a single-mode rdped
exponential. The methods considered are namely Kumaresahifts,
matrix pencil and Kung's direct data approximation. Through first-
order perturbation analysis, we derive closed-form expresions of the
variance of the complex mode, frequency and damping factor gtimates.
These expressions are used to compare the different methodsd to
determine the optimal prediction order for matrix pencil and direct data
approximation methods. Application to the undamped case stws the
coherence of the results with those already stated in the &tature. It is
also found that the variances converge linearly towards the&Cramér-Rao
bound. Finally, the theoretical results are verified using Monte Carlo
simulations.

Index Terms—Damped exponential model, direct data approximation,
linear prediction, matrix pencil, perturbation analysis.

I. INTRODUCTION

HE question of estimating model parameters of exponenti
signals in noise is a fundamental problem in signal proogssi

It has applications in several areas, including array Esiog, radar
scattering, and nuclear magnetic resonance spectros¢opthis

context, several algorithms have been developed, indudiaximum
likelihood approaches [1], [2] and subspace-based methods as
MUSIC [3], [4], backward linear prediction (BLP) [5], staspace
[6], ESPRIT [7], and matrix pencil (MP) [8]. Statistical f@ermances
of these methods, at high signal-to-noise ratio (SNR), halg®
been extensively studied in the case of pure sinusoids ${14]

and damped ones [15]-[18]. Most of these analyses are based o

perturbation theory. For instance, Okhowdtal. [16] have studied
BLP and direct data approximation (DDA) [6] methods, in tlese
of a single damped mode. The achieved expressions of varzme
in the form of multiple sums, which is not very convenient.[1T],

the authors consider the multimodal damped case using Bhe.
resulting matrix expression is compact but does not givehmosight
about the actual performances. Finally, in [8], the MP métl®
studied in the multiple mode case. Here again, the varianogse
in the form of matrix expressions. However, the performanaiethe
method have been clearly stated as closed-form expressiotie

case of a single undamped exponential.

In a manner similar to [16], [17], the present work uses Wikin's
approach [19] to derive the expressions of the mode variafice
three methods discussed previously are studied in the éassingle
noisy damped complex exponential. The first technique densd is
the popular Kumaresan-Tufts method [5]. It performs a redu@ank

pseudoinverse of a data matrix to get backward linear piiedic

The last method considered here is Kung’s state-spacet dia¢a ap-
proximation method [6]. As will be seen in Section Il, subspdased
methods that operate directly on data share a common steghwhi
amounts to find a reduced rank pseudoinverse of a data m&wix.
the three aforementioned methods are studied in Sectipatdliting
from the first-order perturbation analysis of the singulalues and
vectors, assuming a high SNR. Then, in Section 1V, it is shthat
these estimators are unbiased. Furthermore, closed-frpnessions
of the variance of the complex mode and the correspondirmmémrcy
and damping factor are derived. This enables us to estatiish
expression of the optimal tuning parameter of MP and DDA. In
order to check the consistency of our results with thosedtat the
literature, the known equivalence between MP and DDA, fors-fi
order approximation, is shown again using the approachechds
the same manner, the frequency variance expression fordamped

ponential is given. In Section V, we demonstrate the sopgr of

P and DDA over BLP in the single damped/undamped mode case,
and we prove the convergence of the variances towards theétra
Rao bound. Finally, in Section VI, simulation results aresanted
to verify the theoretical expressions.

Il. ESTIMATION METHODS
The noise-perturbed exponential signal model is given by

M
E(n) = z(n) +e(n) =Y _ ap] +e(n) @
=1
forn=0,---,N — 1. Herep; = exp(a: + jwi) = 7; exp(jws),
i = 1,---,M are the signal modesaf < 0 andr; < 1) with
complex amplitudes:; = A; exp(j¢i). The terme(n) is a zero-
ean complex white Gaussian noise with variangeso the real and
imaginary parts ot(n) are assumed to be independent and of equal
variances. Model (1) is used in this section to present timeiptes of
the estimation techniques considered. Then, for pertiaainalysis,
we consider only the single-mode case, .= 1, and we use the
following signal model instead of model (1):

zZ(n) = z(n) + e(n) = ap™ + e(n). 2)

Throughout this paper, the notatidf refers to the noisy or perturbed
version of the quantityX, i.e. X = X + AX, whereX is a scalar

or matrix andA X the error term (or noise). Matrices are denoted by
bold capital letters and vectors by bold lowercase letters.

coefficients, from which the signal modes are obtained jinouA. BLP Method

polynomial rooting. The matrix pencil method, introduceg Hua
and Sarkar [8], is based on a matrix prediction equation iitivthe
data matrices have a Hankel structure similar to that founBLP.
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The BLP method [5] is based on backward linear prediction and
uses a reduced rank approximation of the data matrix in omler
decrease noise influence. It is made up of the following steps

1) Using the available data, form the system of equations

®)

where X; = [&1,%o,---,%z] and %, = [#(k),Z(k +
1, ,# N - L—1+k)]T for k = 0,---, L. The vector

X1b ~ 75(0

0000-0000/00$00.0®) 2008 IEEE



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, XXX

b contains the prediction coefficien{®;}~,, andL > M is  Ill. SINGULAR VALUE AND SINGULAR VECTORPERTURBATIONS
the prediction order.

2) Perform the singular value decomposition (SVD) of matrix
X, and set to 0 all but the firsd/ largest singular values.

All the methods presented before use the reduced rank pseudo
Verse of data matricesX(; and X). So we start our study with
: . o the perturbation in the singular values and vectorsXaf and X
The resulting matrix, denoted b¥X;, is the best rank\M for M — 1. We denoteX, = X, + E,, whereX, and E, are

approximation ofX; in the Frobenius norm sense. . . .
3) Compute the prediction vector estimdieusing the reduced cpnstructed a§(1 using z(n) ande(n) respectively. The notations
pu prediction v : using u = Xo+Eo, X = X+E, andko = xo+eo are defined similarly.

rank pseudoinverse &X;:

b=-X{%o (4) A, Matrix X,
where the superscript+" denotes the Moore-Penrose pseu- [N can be shown that the noiseless data maix is_rank
doinverse. 1 and its SVD isX; = a1u1v{{, where o1 = Arvkoka,
_ e—dw « wl—

4) Obtain the roots{zz ~, of the polynomial B(z) = 1+ W = ¢—[1 pe oY TR v = S [t T
SF bzt =T[5, (1—Zz2""), and then select those locatedk, = >7 ' %, andk, = S~ "' r*. The singular valuer
outside the unit circle. They correspond to the inversegriai is the square-root of the unique non-zero eigenvalue of th&im
modes (i.ep; = 1/z; fori=1,--- , M). XX, associated to the eigenvecter. In the noisy case, we have

XX, = XX, + (EfE, + Ef X, + X{E)). (9)

B. Matrix Pencil Method At high SNR, the first-order perturbation of the eigenvahi of

For damped sinusoids, Hua and Sarkar's matrix pencil mefgpd X1 X is given by [19]:

consists of the following steps:
g step Ac? = v (EIX, + XTE)vi = o1 (vIET uy + ul Eiva).

1) Form two matricesX, and X;. The matrixX; is the same (10)
as before andX, is a shifted version of the latteX, =
[X07X17 XL 1]
2) Compute the low rank approximatioK; of X, using, as B- Matrix X
before, the SVD. ~ The smgular value decomposmoanls given byX = a'lulle,
3) As for BLP, compute the reduced rank pseudoinversKoto where o, = Ary&, k,, u), = [171), ML v =
obtain the matrix estimaté: e vk )
67[17]7*7"' 7p*N7L71]T1 kv' = ZiV:OLilﬁrQZ’ and ku/ =
2 i AR
Z = X Xo. ®) Sk 7. In the case of DDA, we also need the expression of the

: ; ; ~r ’
4) The estimates of the modes are the inverse oftheigenvalues first-order perturbation of the singular vectgf. Leta; = u+Auj,

of Z lying outside the unit circle. then [19]:
1 L+1 L+1
Au1 = ? Z( Z rYLuz (11)
C. DDA Method L =2

The DDA method by Kunget al. [6] is based on state-spacewhere{u’}; L“ is the set of left-singular vectors of the data matrix
formalism. The signal:(n) is seen as the free response of a lineaX, whose n0|sy counterparts are given by the columns of mifix
system with transition matridF having eigenvalues which are thein (6).
signhal modes. So, the problem is to estimate the mafixvhich

can be done as follows: IV. ANALYSIS OF THE ESTIMATION METHODS
1) Form the data matriX = [Xo, X1, - ,Xz]. A BLP Method

2) Obtain its SVD which is partitioned as follows: N
At high SNR, matrixX; is approximately rank 1, thus [16]

S T - - S’lo]{\?’f’} -
X=U'sv# U, U, =~ ey N H
-l o 2]{0 Sh || VY Xt~ 21 (12)
(6) 71
where S’ is a diagonal matrix containing the singular valuegom (4), we can deduce that
of X ordered in non-increasing fashion, a4 is an M-by-

M diagonal matrix. The superscriptf” denotes the conjugate b~ —%X{{io. (13)
transpose. o1
3) Estimate the observability matrix Sinceb = b+ Ab, andb = —+v1, the first-order perturbation of
- o b is :
6 =TS 7
T @ Ab:—%(X{Ieo—&-E{{xo—kbAaf). (14)
1

An estimate ofF is then given by
The error Ab in the prediction coefficients induces a shifting of

F=0676, (8) the rootz, = 1/p of the polynomial B(z) towards a new position
5 5 5 Z1 = z1 + Az, where [20]:
where ®; (resp.®;) is deduced from® by eliminating the .
; L—k
last (resp. the first) row. Az — z 27

4) The M eigenvalues ofF" are the estimated modes. N P HZ‘L:2(21 — ) Ab (15)
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and{z;}_, are the zeros of the polynomi#l(z) which are different

from z1. Let 1 = [[\,(21 — 2i) = T ’Cvl:f{fL andg;, =
[E7 272 )2 = Tp,fz” v1, then (15) may be rewritten as
1 Vky
Az = ——glfAb = LY A, (16)
B Bip

After some straightforward calculations using (16) and)(lve
finally obtain:
AZ1 =

3 u{{ (rvkvseo — E1vy). a7

1
o151p

It can be seen that the estimaieis unbiased sinc& {Az,} = 0.

Sincez = 1/p = (& + j@)~*, we obtain using a first-order series

~

expansionAz; ~ —(Aa + jAw)/p. Hence the estimates and @
are also unbiasedE {Aa} = E{Aw} = 0. Now, using the fact

~

that e(n) is zero-mean uncorrelated complex noise and after so

lengthy calculations, it can be shown thf (Az1)*} = 0, and

A?g?2 1—r2 \?
(18)
with s; = Z;’;}l ir? me\r:;anl_rm, s2 = Smotar? 4
m2 SN me i SN (N —i)?r?, andm = min{L, N—L}.

Moreover, var (Aa) = var (Aw) = Z-E {|Az|?}, which implies:

1—r2E

var (Aw) T

2
) (r4k5ku + 59 — 27’2!4:”31) .
19)
Finally, replacing all the sums leads to expression (23gmiat the
bottom of the page. This new result is interesting since edsily

__ o¢
T 2A2K2k2r0

E {Aw} = 0. As for BLP, it can also be shown th&t{ (Az1)*} = 0,
and
2 AQUS 2 2/
E{|Az1| } = i ((1 +77)s2 —2r 52) (24)
1
where s, = so + St — SN (N — i)r?. Thus
var (Aa) = var (Aw), with:
Ug 2 2
var (AW) = m ((1 +7r )82 — 2r 82) . (25)
Again, replacing all the sums leads to:
2N —2L .
Aw) — 03(1 — 7‘2)3 (17T2%V+I2L)2(1,T2L) if L<N/2
var(Aw) = =om 1yt it > N/2
(177.2N72L)(1,T.2L)2 -
(26)

We observe thawar (Aw) is a rational function inr?", so it is

rHgssible here to obtain the optimal valuelofor which the variance

IS minimized. For instance, foL. < N/2, the first derivative of
var (Aw) with respect tat = r2L is zero when:

N2 2N, AN _

3+ 3r r (27)

This is a cubic equation inwhich may be solved analytically using,
for example, Cardano’s formula [21]. The value tofs found to be
t =™ /tan((r — tan~" r~V)/3), which implies

E_;Lmezjﬂizﬁ)
2 2Inr 3

One special case of interest is whee= 1, for which we obtain the
well-known optimal value for an undamped sinusaldiin = N/3.

On the contrary, when tends towards zero, we are confronted with
a damped wave with a strong damping. In the latter cAsg, tends

Lmin = (28)

exploitable. Namely, it may be used to compare the perfoo@sin towardsN/2. This value is also reached asymptotically (ds— o),
of BLP to MP and DDA under the assumption of high SNRfor anyr < 1. So the optimal value of, lies betweenV/3 and N/2
This will be done in Section V. For the particular case of aand approached’/2 as the damping factor increases. Of course, since
undamped sinusoidr( = 1), the frequency variance reduces tOvar (Aw) is symmetric abouf, = N/2 and assumingV even, the

o'g L .
vazr(Aw) = ﬁ% if L < N/2 and var (Aw)

% 2[’§1§;(if$§f;f3f)“] if L > N/2, which is consistent with the
results in [8], [14].

B. Matrix Pencil Method
Starting from (5) and (12), and using the fact tBat = X, + Eo,
we obtain the following expression:

AZ=7 7~ (-ZAo? + XFEy+ EFX,).  (20)

01
The first-order perturbation of the eigenvaluge of the matrixZ is
then [19]
Azl = 1

;V{I(—ZAU% + X{Eo + Ef' Xo)vi. (21)
1
As Z = Lvivi, replacingAot by its expression in (10), we get
1
AZ1 = —u{l(pEo — El)Vl. (22)
ag1p

Applying mathematical expectation, it leads ®{Az1} = 0,

variance reaches the same minimumN\at- Luyin.
Finally, the variance in the undamped case may be derivaty eas
from (26), and corresponds to the one presented invi@](Aw) =
2

IfLSN/2andvar(Aw) %WHLZN/2

Te

1
AZ (N—L)?L

C. DDA Method

In the single mode case, the ~matri({é$~andé)2 in (8) are vectors.
The pseudoinverse @ isthen®; = 17, inwhich# = ||©||°.
Let & = k + Ak, the perturbation of is then

Ak = OFAO, + AOT O, (29)
from which we get
6 ~oF + Lae! - Lol (30)
K K

Then, using (8) and according to (29), the following expi@sof
the perturbation oF' (which in our case equals the scajgrcan be
derived:

Ap (31)

1
;ef(Aeg — pA@®,).

Since S} in (7) is a scalar, it simplifies itself in (8). Consequently,

which implies that the estimates and & are unbiasedE {Aa} = one may simply choos® = ) (and ® = u}), which leads
2N —2Ly\fq _ _.2\,.2L _ _AL+2 i
03(1 - 7’2)3 (1+(717T2N7)2[£ 2([21€t;)L(1,LT(1):T2)TJL]2 ] if L < N/2

var (Aw) = S A2

(1—r2N =20y (1 4720y (1 472042y 9(NZL)(1—r2) (142N —2L),20

(23)

(1—r2N —2L)2[1—72L L (1—72)r2L]2

it L>N/2



to E{Ap} = 0 in view of (11). Therefore, the estimates of the
frequency and the damping factor are also unbiased. Aftareso
simplifications, we geft { (Ap)®} = 0, and

ol
K2A2K2, k2, r2
v u

E{|Ap|2} = ((1—|—r2)32 —27‘25/2) . (32)
Finally, using the fact thatar (Aa) = var (Aw) = 5 E {|Ap|*},

k = ky/k, andk,, = k., we obtain:

ot

2A%K2k

From to (33) and (25), it appears that DDA and MP are equitale
for a first-order approximation. Of course, this result héekaly
been established in [22] for the general casdbf> 1 exponentials,
using a different approach. So all the properties demaestriaefore
on MP are also valid for DDA.

var (Aw) = ((1+ ) sy — 27’23/2) . (33)

V. PERFORMANCECOMPARISON AND CONVERGENCE TO THE
CRAMER-RAO BOUND

Here we demonstrate the superiority of MP and DDA over BLI
for a first-order approximation. Then, we discuss the asptigpt
convergence of all the variances towards the Cramér-Raerlo
Bound (CRB).

Proposition 1 For all » € (0,1] and1 < L < N —1, the frequency
variance achieved by BLP is at least equal to that obtainedvisy
and DDA for a first-order approximation, that is:

var (Aw)PEY > var (Aw)™? = var (Aw)PP4. (34)
Proof: See Appendix A. [ ]
This result was already established in the case of a singte p
sinusoid (see e.g. [8]) and is now proven in the damped case.
For any unbiased estimator of the frequency and the dampi
factor, under the assumption of a single exponential mabelCRB
is given by [23]:

_ o2 (1—7’2)3(1—7’2N)
T 2A272(1 — r2N)2 — N2p2N(] — 2)2°
(35)

CRB(a) = CRB(w)

As N — oo, the convergence of all the previous estimation variances

towards the CRB is obvious in view of (23), (26) and (35), faya
given value ofL such thatL = uN, u € (0,1), provided thatr < 1.
The following proposition gives the rate of convergence.
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VI. NUMERICAL SIMULATIONS

We consider a signal composed of one damped exponential with
parametersy = —0.1, w = 0.2, and N = 30. The peak SNR is fixed
to 40 dB: 10log(A%/02) = 40. Fig. 1 shows the theoretical and

Proposition 2 Let ey be the deviation of one of the variances irsample mean square errors (MSESs) obtained from 1,000 aéaliz

(23), (26) or (33) from the CRB:y = var (Aw) — CRB(w). Then,
Vr € (0,1) andL = uN, p € (0,1), en converges linearly towards
zero with the following rates:

2u H
lim SNHL 7“2 - !f w e (0,1/2] (36)
N—oo €N P20 e [1/2,1).
Proof: See Appendix B. [ |

Proposition 2 gives the rate of convergence to the CRBig chosen
such thatl, = uN. For instance, the rate of convergencerior

of additive noise for BLP, MP and DDA, together with the CRB. |
can be seen that the theoretical MSEs are close to the estiroags.
Moreover, it appears clearly, as demonstrated analyyitaifore, that
MP and DDA perform better than BLP. Note that this result ikdva
whatever the value of the damping, assuming a sufficiengi BINR.
We also observe that the minimum MSE for MP and DDA is attained
atL = 12 andL = 18, which correspond to the values obtained from
expression (28)Lmin = 12.44 and N — Luin = 17.66.

For the second example, the same signal is used but the SNR is
now varying. The prediction order is set o = 10. The results

L = N/2, andr?/® for L € {N/3,2N/3}. In the same manner, achieved are given in Fig. 2. Here we observe that the theatet

it can be shown that, for the particular case of MP and DDA, thexpressions of the variance are valid beyond a threshold, 8KiiRh
minimum variance corresponding i, in (28) converges to the in this case is about 8 dB. Of course, this is not a rule of thumb
CRB with rater. because, in fact, it also depends on the damping factor.
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VIlI. CONCLUSION

In this paper, we have presented a first-order perturbatiatysis
of three subspace-based techniques operating directhherdata:
Kumaresan-Tufts, matrix pencil and direct data approxionatin the
case of a single damped exponential. We have derived thgtiadl
closed-form expressions of the mode, frequency and danfpitgr
variances. Thanks to these expressions, we have shown ®anil
DDA perform better than BLP. Moreover, we have found theropti
prediction order for MP and DDA. In fact, this order dependsanly
on the number of samples but also on the damping, which isavmkn
So, in practice, an appropriate value will lie betwe®i3 and N/2,
the latter being preferable for a strongly damped sinuddate that,
unless some restrictive hypotheses on the signal parssratestated,
the expression of the optimal prediction order cannot bendofor
BLP, due to the nonlinear aspect of the underlying probleime T
extension of the results to the multimodal case is possibieiged
that the modes are separated enough and the damping fatoo$ a
the same order of magnitude.

APPENDIXA
PROOF OFPROPOSITIONL
Here we prove (34) for € (0,1). The caser = 1 is simple and
will not be considered. Fol. < N/2, the ratio of BLP and MP
variances is

var (AW)BLP 2 2L

var (Aw)PM" (1 =) - L2(1 - r?)%r
var (Aw)™* N [1—r2L — L(1 —r2)r2L]2
since =17, 2 = (1—17")/(1 = r?) and [[1y r* = r#00),
using the arithmetic mean—geometric mean inequality, vtaioll —
20 > L1 — r)r=h Thusr?(1 — 292 > L2(1 — r2)%r2L,
For L > N/2, the ratio of BLP and MP variances is
var (Aw)™"
var (Aw)™?
7,,2L(1 4 7”2L)[7”2(1 _ 7,,2L)2 4 2L(1 _ 7,,2)(1 _ 7,,2L) _ L2(1 _ 7”2)

37

r

2,21

whereey = var (Aw) — CRB(w), and
Wy = 7‘2MN{7‘2(1 — er) [1 — 7“2(172“)1\](3 + 32N 4 r2(17“)N]

NN (g r2<1*“>N)}. 41)

Sincep < 1/2,itis easy to see thaty — 0 asN — oo, Vr € (0,1).
The rate of convergence is then
20 (N+1)

W1
TQ[J.N

ENHL — 2, (42)

lim
N—oco EN

P= N—o0 WN

N—oo

This shows that the convergence is linear sipce (0, 1). The cases
of BLP andy > 1/2 may be proved similarly.
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T (1 + 721 — 2L — L(1 — r2)r2L]2

L(1+r*h)  (N-L)(14rN73%
1 — 2L 1 — p2N-2L

- . (39
It can be shown that the sequeneog(r) = n(1 4 2™)/(1 — r2"),
n > 1, increases for all- € (0,1). So, using the fact that. >
N — L, we obtainwr (r) > wn—r(r), which completes the proof
of Proposition 1.

APPENDIXB
PROOF OFPROPOSITION2

In this appendix, we demonstrate the linear convergencen®f {[16]

variance towards the CRB for the MP method with paramétet

uN such thatd < u < 1/2. For L < N/2, we have:
_a§(1 —7r
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