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A population-based method for the identification of
ARX models

Levy Batista, El-Hadi Djermoune, Thierry Bastogne, and Anne Gégout-Petit

Abstract—System identification is a data-driven input-output
modeling approach more and more used in biology. With the
advent of high-content screening studies in cell biology, new
parameter estimation issues have emerged such as the identi-
fication of systems population to test the effects of numerous
pharmaceutical compounds. To this end, a new data-driven
modeling approach is proposed based on a hierarchical rep-
resentation. An ARX (Auto-Regressive with eXogenous input)
model structure is used at a low level to describe the input-
output dynamics and, at a higher level, a gaussian distribution
law characterizes the inter-individual dispersion between the
systems of a population. Categorical covariates are introduced
in the problem with the aim to finally estimate their effect on
the input-output dynamics. The parameter estimation step relies
on an EM (Expectation-Maximisation) algorithm. The so-formed
population-based identification method is implemented, tested
and compared with the classical ARX identification technique,
which is repeatedly applied to each individual system. Using the
Fisher information matrix, the parameter standard errors are
estimated and two statistical tests are proposed to assess the
effects of covariates. A Monte-Carlo simulation study is carried
out and shows the practical relevance of the population-based
identification method, which allows to drastically increase the
statistical power of tests. Finally, an application on in vitro
data illustrates the applicability of the innovative identification
method.

Index Terms—System identification, Population approach,
Mixed effects models, EM algorithm, ARX structure

I. INTRODUCTION

FOR years, revolutions of nano- and bio-technologies have
largely contributed to the advent of new modeling issues.

One of them consists in identifying populations of dynamical
systems. A first example in cell biology deals with the high-
content screening (HCS) studies, which aim at testing several
hundreds groups of pharmaceutical compounds by analyzing
multidimensional data at early steps of drug design [30]. In
this application context, cells are firstly incubated with the
substance to be tested and the cell activity is measured in real
time. A second example concerns the microfluidic systems
used in nanomedicine for drug delivery [29]. Each microfluidic
process is a very small unit of production that is continuously
operating to provide small amounts of pharmaceuticals. The
production scale-up generally requires to parallelize a few
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dozen or a few hundred of microfluidic systems. Another
targeted biomedical application area deals with the identi-
fication from longitudinal data of prognostic biomarkers in
personalized medicine [12].

In all those application fields, culture wells, manufacturing
micro-units and patients are dynamic systems whose input-
output variables are time signals. One common goal is to
control their output trajectory in order to reach quality/efficacy
specifications. Such a challenge cannot be addressed with-
out getting empirical cause-effect models of the input-output
dynamics. This is the field of system identification, a set of
statistical methods that aim at building mathematical models
of dynamical systems from measured data [18]. Numerous
methods have been developed and successfully implemented
to characterize and estimate the pharmacokinetic and pharma-
codynamic effects of compounds and treatments [14], [11],
[6], [7], [23], [1], [10], [9], [3], [2], [26], [25]. Every time,
the proposed methods are applied to one or a few systems but
does not globally address the identification issue of large sets
of dynamic systems.

Indeed, another feature in common between the three
emerging biomedical fields is the concept of population.
Dozens, hundreds or thousands of similar systems are involved
in each case. Quality considerations then require to control
response reproducibility and to identify which critical risk
factors affect the inter-system variability. To identify additive
and synergistic effects of those risk factors, we need to
integrate a new class of input variables called covariates. The
latter are usually categorical variables and often correspond to
qualitative information such as the cell lines, animal sex, diet
type, compound category, patient history or genetic markers.
Their effects on the input-output dynamics are then considered
as unknown hyper-parameters to be estimated from input-
output time series. This is the main issue addressed in this
study.

The traditional approach to handle that problem consists in
applying separately the dynamic system identification methods
to each biological subject of the studied population. This strat-
egy requires to repeat many times the identification procedure
even though the input-output datasets are recorded during the
same period of time and in the same experimental framework.
It particularly includes the stochastic part of the dynamic
model, which is systematically identified for each system
when it could be assumed as identical within the studied
population. Consequently, this technique unnecessary adds a
large number of unknowns in the estimation problem and may
finally significantly lower the statistical power of tests used to
assess criticality of risk factors. Since every individual system
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can bring useful information for the rest of cell cultures, such
a drawback could be avoided with a hierarchical modeling
approach [15].

So far, the population-based identification of dynamic sys-
tems has not been addressed except in [13] in which the au-
thors proposed a hybrid structure by adding an autoregressive
part to a mixed model. However, the proposed mathematical
representation is limited to a first-order dynamics and there
is no probability distribution associated to the autoregressive
parameters. Such prior information would allow us to regular-
ize the estimation problem by defining the upper part of the
hierarchical model. This paper aims at proposing a solution
based on a class of hierarchical models composed of a given
input-output model for the lower level and a probability dis-
tribution of the individual parameters for the upper level. The
resulting augmented representation is also called random- or
mixed-effect model. M. Lavielle and L. Aarons have recently
shown that a number of pharmacokinetic models, which the
parameter estimation problem is known to be ill-conditioned
at an individual level, can become identifiable in practice at
the population level if a number of specific assumptions on the
probabilistic model hold [16]. Historically, this class of models
is the result of extensive works carried out by the population
approach group in the international statistical community [27],
[15], but was not investigated in the system control framework
despite the increase of application cases in this field.

Thereafter, we propose a population-based method for the
identification of linear and time-invariant dynamic systems
described by an ARX model structure whose (random) pa-
rameters are described by probability densities. The addressed
issue is to estimate the hyper-parameters of this hierarchical
model from input-output signals coming from a population of
biological subjects. In that aim, we propose to implement an
Expectation-Maximization (EM) algorithm to perform both a
Bayesian estimation at the individual level and a maximum
likelihood estimation at the population level. In [4], [5], we
introduced a first version of solution and we assessed the
proposed method on a simulation example and compared it
with a classical system identification approach repetitively
applied to each individual system. In this paper, we derive
the complete calculations related to the estimation of the
hyper-parameters and the Fisher information matrix which
represents a key step to estimate the uncertainty on the
parameters and the p-values used to estimate the criticality
of the covariate effects. Moreover, the proposed mixed-effect
ARX identification method is applied to real-world in vitro
data to assess its usefulness in a real biological context.

The paper is organized as follows. In the next section, the
hierarchical ARX model structure is presented. The EM algo-
rithm is described in Section 3 for the parameter estimation.
The uncertainty on the estimated parameters is derived from
the Fisher information matrix in Section 4. In Section 5, the
estimation performances are assessed on a single dataset and
by performing Monte-Carlo simulations. Section 6 is devoted
to the applicability assessement of the proposed method to in
vitro data obtained from Gap-FRAP tests. Finally, we conclude
by a discussion on the advantages and drawbacks of the
proposed approach.

Distribution of
individual parameters

Input-output model
ui

θi

Yi

Fig. 1: Hierachical representation of population model

TABLE I: Description of the main indices used in this article

Notation Description
I nb of individual systems (subjects)
T nb of time samples per system output
na + nb nb of parameters in the ARX model

(bottom layer)
ng nb of identifiable covariate effects

(top layer)
i ∈ {1, . . . , I} subject index in a population of systems
j ∈ {1, . . . , na + nb} parameter index in an individual system
k ∈ {1, . . . , ng} covariate index
t ∈ {0, . . . , T − 1} time-series index

II. HIERARCHICAL ARX MODEL

The hierarchical ARX model we propose to identify from
input-output data is composed of two layers, as illustrated in
Figure 1. The notations used in this paper are given in Table I.

A. Bottom layer: an ARX model structure

The lower part of the hierarchy describes the input-output
dynamical model based on an ARX structure, which is com-
monly used in the system identification literature [18]. Herein,
it represents the dynamical behavior of the i-th subject or
system (see Fig. 2) and satisfies the following equation for
every t ≥ na:

Ai(q) Yi(t) = Bi(q)ui(t) + Ei(t), (1)

where i ∈ {1, . . . , I}, Yi(t) is the output process until time
t: Yi(t) = (Yi(s))0≤s≤t and ui(t) is the input process until
time t: ui(t) = (ui(s))s≤t. Both of them are measured at
discrete integer time instants t < T and we suppose that
ui(t) is deterministic and known. T is the number of time
measurements of Yi acquired at a constant sampling rate and
I is the number of subjects in a large biological sample to
be analyzed. Moreover, the noises Ei(t) of this equation are
independent Gaussian variables

(Ei(t))t≥0
iid∼ N (0, σ2

e).

Bi(q)
1

Ai(q)

ui(t)
Ei(t)

Yi(t)

Fig. 2: ARX structure used to describe the individual input-
output behaviour of the i-th system
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The polynomials Ai(q), and Bi(q) are given by:

Ai(q) = 1 + ai,1q
−1 + . . .+ ai,na

q−na (2)

Bi(q) = bi,1q
−nd + . . .+ bi,nb

q−(nb−1+nd), (3)

where q is the delay operator such that ∀n ∈ Z, q−ng(t) =
g(t − n) for a given time series g(t). The polynomial orders
na, (nb−1), and the input-output delay nd are assumed to be
known; they will not be included in the estimation problem.
Let us gather all the model parameters for the subject i in the
vector

θi = [ai,1, . . . , ai,na
, bi,1, . . . , bi,nb

]t ∈ R(na+nb). (4)

At each current time instant, we assume the past values of the
input-output variables are known and (1) becomes1:

Yi(t)|ϕi,t−1, θi = ϕt
i,t−1 · θi + Ei(t), (5)

∼ N (ϕt
i,t−1 · θi, σ2

e) ∀t ≥ na, (6)

where ϕi,t−1 is a vector of size (na + nb):

ϕi,t−1 = [− yi(t− 1), . . . ,−yi(t− na), ui(t− nd), . . .
. . . , ui(t− nd − nb + 1)]t (7)

that contains the previous (strictly before time instant t)
observations from Yi(t) and ui(t) useful for the definition of
Yi(t). In other words, if we consider the conditional density
distribution of Yi at time t given the past ϕi,t−1, fY |ϕ(y|ϕ),
it equals the Gaussian density function φϕt·θ,σ2

e
(y), where

φµ,σ2(.) denotes the Gaussian density function with mean
µ and variance σ2. Despite the dependence between the
successive values Yi(t), t ≥ 0, one can decompose recursively
the likelihood of the vector Yi = [Yi(na), . . . , Yi(T − 1)]t

leading to

L(Yi |ϕi,0, θi) =

T−1∏
t=na

fYi(t)|ϕi,t−1
(Yi(t)) (8)

=

T−1∏
t=na

φϕt
i,t−1·θi,σ2

e
(Yi(t)). (9)

From this expression of the individual likelihood, each of the
I individual models can be estimated independently from each
other using the maximum likelihood estimator that is given by

θ̂i =
(
Φt
iΦi

)−1
Φt
i Yi (10)

where Φi is a regressor matrix of dimension (T −na)×(na+
nb):

Φi = [ϕi,na−1, . . . , ϕi,T−2]t ∈ R(T−na)×(na+nb). (11)

The vector θ̂i is an unbiased and minimum-variance estimate
of θi and its variance is given by [18]

var(θ̂i) =

(
Φt
iΦi

σ2
e

)−1

(12)

It is worth mentioning that even though the variance is
minimum among the linear estimators, it is not necessary

1Note that the input signal has to be known for t < 0 if nb+nd−1 > na.

small. For that to be possible, the following conditions should
be satisfied:
• σ2

e needs to be small;
• T and consequently T − na, the number of observations

used for the estimation and number of rows in Φi, should
be as large as possible;

• Φi has to be full column rank and well-conditioned, that
is, ui should be a persistent excitation of order na + nb
to collect relevant information about the system through
the output measurements [18].

These conditions are often in opposition with most of the
biological experimental set-ups. In practice, the noise level
is usually high, T is generally small and the choice of the
input signal is very limited, if not impossible.

B. Top layer: a mixed-effect model

The idea is to add prior information owing to the upper part
of the hierarchical model. Despite the variability of individuals
in each group, all their responses remain similar and individual
parameters should be all in the same vicinity. To encode such
a proximity between subjects’ parameters, we define the upper
level of the hierarchy with the following distribution:

θi ∼ N (θ0 +Bci,Ω), i = 1, . . . , I (13)

where θ0 = [θ0,1, . . . , θ0,(na+nb)]
t is the vector of mean

parameters associated with the reference group, ci =
[ci,1, . . . ci,ng

]t contains the ng values or levels of the co-
variates for subject i and the (na + nb) × ng matrix B =
(βj,k)1≤j≤(na+nb),1≤k≤ng

with βj,k is the fixed effect of the
k-th covariable ci,k on θi,j . The positive semi-definite co-
variance matrix Ω ∈ R(na+nb)×(na+nb) describes the random
variability of parameters between subjects in the same group.
Equation (13) can be detailed for each single parameter. The
mixed-effect model of the j-th parameter θi,j is given by:

θi,j = θ0,j +

ng∑
k=1

βj,kci,k +Wi,j , j ∈ {1, . . . , na + nb},

(14)
in which θ0,j denotes the intercept term describing the mean
effect of the reference group while βj,k is the fixed effect of
the k-th covariable on θi,j . Wi,· ∼ N (0na+nb

,Ω) describes
the random effects, i.e. the intra-group variability and the
correlation between the θi,j’s. Covariates ci,k can be either
quantitative variables or binary variables. In the latter case,
modalities 0 and 1 stand for the reference level and the level
to be tested, respectively. Similarly, if one covariable has more
than two levels (l > 2) then it can be encoded by l− 1 binary
variables.

The unknown parameters θ0 and B in (13) may be gathered
in a single vector. Let us denote by β the vectorization of
matrix B: β = vec(B), and the vector of parameters by Υ =
[θt

0, β
t]t. It is straightforward to show that

θ0 +Bci = CiΥ (15)

where Ci = [1, cti] ⊗ Ina+nb
∈ R(na+nb)×(na+nb)(ng+1), ⊗

and In stand for the Kronecker product and the identity matrix
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θi ∼ N (CiΥ,Ω)

Yi |Φi, θi ∼ N (Φiθi, σ
2
e)

ui

θi

Yi

Fig. 3: Hierachical representation of population model

of size n, respectively. The parameters in Υ are clearly divided
into two parts:
• the upper part θ0 ∈ R(na+nb) is a vector containing the

mean parameters of the reference group,
• the lower part β ∈ Rng(na+nb) contains the hyperparam-

eters estimating the relative effects of the ng covariable
levels on the (na + nb) model parameters.

C. Estimation Problem

Finally, the hyper-parameters to be estimated are gathered
in:

Θ = (Υ,Ω, σ2
e). (16)

Using (6), one can express for each t the conditional density
of Yi(t) according to Θ, the past and covariates ci by

Yi(t)|ϕi,t−1,Θ ∼ N (ϕt
i,t−1 ·CiΥ, ϕt

i,t−1Ωϕi,t−1 +σ2
e), (17)

∀t ≥ na. Θ can be determined by maximizing the likelihood
L(Yi; Θ|ϕi,0). However in the presence of latent variables
(the θi’s here), it is usual to use a EM algorithm. It is the
object of the next section, where we propose to implement an
EM algorithm to maximize the likelihood of the upper level
using the posterior expectation of θi|yi from the lower level
of the hierarchical model (see Figure 3).

III. EXPECTATION-MAXIMIZATION ALGORITHM FOR THE
MAXIMUM LIKELIHOOD ESTIMATION

The expectation-maximisation (EM) algorithm was first
introduced by Dempster [8] who proved that each iteration of
the algorithm increases the likelihood of the hyper-parameters.
This algorithm relies on a Bayesian approach in which a
prior information is used on the missing parameters θi and
maximizes the likelihood of the hyper-parameters Θ. It is well
known for its ability to deal with missing data [8]. Indeed,
the EM algorithm estimates the hidden variables, in our case
θi, by its expectation conditionally to yi, a realization of Yi,
and Θ̂(`−1), the estimation of Θ after ` − 1 iterations of the
algorithm.

A. Maximization step

Let us define L(Y
(c)
i |Θ) the likelihood of the complete data

vector for the i-th system, Y
(c)
i = [Yt

i, θ
t
i ]

t, corresponding to
the concatenation of the output signal Yi and the vector θi
considered as the hidden variable,

L(Y
(c)
i ; Θ) = L(Yi, θi; Θ)

= L(Yi |θi)L(θi; Θ). (18)

At each iteration `, the principle of the EM algorithm is to
maximize the conditional expectation of the complete log-
likelihood given the observations (Yi)1≤i≤I and the current
estimate of the parameter Θ̂(`−1) that is to maximize:

EΘ̂(`−1)

[
log
( I∏
i=1

L(Y
(c)
i ; Θ)

)∣∣∣(Yi)1≤i≤I

]

=

I∑
i=1

EΘ̂(`−1)

[
log
(
L(Yi |θi)

)
|(Yi)1≤i≤I

]
+

I∑
i=1

EΘ̂(`−1)

[
log
(
L(θi; Θ)

)
|(Yi)1≤i≤I

]
. (19)

The first term in the RHS of (19) concerns ΘY = σ2
e , the

part of Θ that parametrizes the law of Yi|θi and the second
one Θθ = (Υ,Ω) parametrizes the law of the θi’s. The two
parts can be maximized independently leading to equations
(20)-(22) given at the top of the next page, where tr(·) stands
for the trace of a matrix.

The fact to maximize the conditional expectation of the
complete log-likelihood is like replacing the missing variable
θi by its posterior expectation. This is the technical solution of
the EM algorithm to iteratively compute estimations of θi and
Θ that maximize the complete log-likelihood. The computation
of the posterior expectation is the object of the Expectation
step that is explained in the next section.

B. Expectation step

The E-step aims at computing the posterior expectation
of the individual parameter θi with (13) being the prior
distribution. We use again the distribution of the complete
data vector Y

(c)
i for the i-th system. We use the different

conditional factorizations of the likelihood of Y
(c)
i to show

that

L(θi|Yi,Θ) =
L(Yi |θi,Θ)L(θi|Θ)

L(Yi |Θ)
(23)

We combine Equations (6), (13), (15) and (17) and use
classical computations on normal distributions to show that
the posterior distribution of θi|yi is Gaussian with mean and
variance given by:

EΘ(θi|Yi) = CiΥ + ΩΦt
iV
−1
i (Yi−ΦiCiΥ) (24)

varΘ(θi|Yi) = Ω− ΩΦt
iV
−1
i ΦiΩ, (25)

with Vi = ΦiΩΦt
i + σ2

eIT−na . Using the Woodbury identity,
we can rewrite :

varΘ(θi|Yi) =

(
Φt
iΦi

σ2
e

+ Ω−1

)−1

. (26)

It is interesting to compare (12) with (26). We observe that
a new term is added. The latter is the inverse of the a priori
variance on θi. For instance, if the prior is noninformative
(Ω → +∞), it will not affect the estimation of θi compared
to the individual approach.
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Υ̂(`) =

(
I∑
i=1

Ct
i (Ω̂

(`−1))−1Ci

)−1 I∑
i=1

Ct
i (Ω̂

(`−1))−1EΘ(`−1) [θi|Yi] (20)

Ω̂(`) =
1

I

I∑
i=1

(
CiΥ

(`)Υ(`)tCt
i − 2EΘ(`−1) [θi|Yi] Υ(`)tCt

i + EΘ(`−1)

[
θiθ

t
i |Yi

])
(21)

σ̂2(`)
e =

1

(T − na)I

I∑
i=1

(
Yt
i Yi−2EΘ(`−1) [θi|Yi] Φ

t
i Yi + tr(Φt

iEΘ(`−1)

[
θiθ

t
i |Yi

]
Φi)
)
. (22)

Let us define the sufficient statistics needed to maximize
the likelihood of the hyper-parameters at iteration ` by:

S
(`)
i,1

∆
= EΘ(`−1) [θi|Yi]

= CiΥ
(`−1) + Ω(`−1)Φt

i(V
(`−1)
i )−1(Yi−ΦiCiΥ

(`−1)),
(27)

the same for the sum of squares θiθt
i :

S
(`)
i,2

∆
= EΘ(`−1)

[
θiθ

t
i |Yi

]
= S

(`)
i,1S

(`)t
i,1 + Ω(`−1) − Ω(`−1)Φt

i(V
(`−1)
i )−1ΦiΩ

(`−1).

(28)

In the maximization step we use them to replace the
hidden variables by their statistics S

(`)
i,1 , and S

(`)
i,2 . We can

initialize the upper part of Υ̂(0) (i.e. θ̂(0)
0 ) and σ̂

2(0)
e by an

ARX identification applied to one individual, and Ω̂(0) with
reasonable arbitrary values. In the case where covariables are
used, the lower part of Υ̂(0) (i.e. β̂(0)) is set to 0. It can be
shown that the procedure increases the conditional likelihood
of the complete data (18) at each iteration.

IV. UNCERTAINTY OF ESTIMATES

A. Fisher information matrix

In the Gaussian framework, we know that the maximum
likelihood estimator is unbiased and reaches the Cramér-Rao
bound, which is the lower limit of the variance. The Cramér-
Rao bound is the inverse of the Fisher information matrix. If
we maximize the likelihood L(Y; Θ) =

∏I
i=1 L(Yi; Θ) of the

observed data (Yi)1≤i≤I then the Fisher information matrix
is expressed as:

IY(Θ) = −EΘ

[
∂2 logL(Y; Θ)

∂Θ∂Θt

]
. (29)

However, in order to keep the hierarchical meaning of the
model we maximized L(Y(c); Θ) =

∏I
i=1 L(Y

(c)
i ; Θ) with

the EM algorithm. In this case, T. A. Louis proposed in [19]
a solution to compute the Fisher information matrix of the
measured data from the vector of the complete data (completed
by the θi’s). He showed that the information on the data
is equal to the information of the complete data minus the
missing information:

IY(Θ) = IY(c)(Θ)− Iθ|Y(Θ), (30)

where θ = (θi)1≤i≤I . Thereby using the missing information
principle, the observed information may be expressed as:

IY(Θ) = −EΘ

[
∂2 logL(Y(c); Θ)

∂Θ∂Θt

]
−varΘ

[
∂ logL(θ; Θ)

∂Θ

]
.

(31)
Note that these statistics can be computed in the last iteration
of the EM algorithm using the gradient and the Hessian
matrix for the complete-data problem. The derivatives in (31)
have analytical forms but computing the expectation and the
variance-covariance matrix require to calculate high order
moments of θi. To assess these quantities we used the moment-
generating function of a multivariate normal distribution. Once
the Fisher information matrix is estimated, we can compute the
standard errors by inverting this matrix and taking the square
root of the diagonal elements. Details of the calculation of the
Fisher information matrix are provided in the supplementary
material associated with the paper.

B. Statistical tests

Differences between groups can be tested at the two differ-
ent levels, either on the lower level (i.e. testing directly the
individual parameters θi with a t-test) or on the upper level
(testing the hyper-parameters β of being different from 0).
We have used the t-test to compare the results between the
individual approach and the population approach.

1) Two-sample t-test: The two-sample t-test is a parametric
test that compares the mean parameter of two independent
samples. Assuming the two data samples, x and y, are drawn
from populations with equal variances, the associated test
statistics is defined as:

t =
x− y
s

, (32)

with

s =

√
(I1 − 1)s2

x + (I2 − 1)s2
y

I1 + I2 − 2
, (33)

where x and y are the sample means. In our case, x cor-
responds to the θi associated with the first group and y the
one of the second group. sx and sy are the sample standard
deviations, I1 and I2 are the sample sizes. The test statistic
under the null hypothesis follows a Student’s t-distribution
with I1 + I2 − 2 degrees of freedom.

Note that this test is usually too optimistic since it does
not take into account that the parameters θi are estimated and
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therefore uncertain. On the contrary, the Wald test is computed
with the parameter uncertainty, but this test is much more
complicated for the individual approach because it requires
to determine the uncertainty of the mean group from the
uncertainty of the individual estimations. In this paper, only
the t-test is used to compare the two approaches, and the Wald
test is only computed for the population approach.

2) Wald Test: As in [21], once the standard errors (SE) are
estimated, we propose to use the Wald test to assess the effects
of covariables, coded in Υ (see (15) and (14), on the input-
output model parameters. As defined in Section 2, βj,k is the
fixed effect of a given covariable k on the model parameter j.
For any βj,k we compute its estimate β̂j,k. The null hypothesis
to test is H0 : {βj,k = 0}.

The Wald statistics is defined as:

SW =
β̂2
j,k

SE(β̂j,k)2
, (34)

and follows a χ2
1 distribution with one degree of freedom under

H0. In the results presented later on, we display the p-value
of this test.

V. PERFORMANCE ASSESSMENT

A. Experimental design

The objective is to compare the estimation performances
of the classical identification strategy applied independently
to all the tested subjects (systems) and the population-based
identification approach developed in the previous sections. The
simulated input-output data of the i-th system are generated
by the following ARX model:

Yi(t) = −ai,1Yi(t− 1)− ai,2Yi(t− 2) + bi,1ui(t− 1) +Ei(t)
(35)

with na = 2, nb = 1, nd = 1, Ei(t) ∼ N (0, σ2
e = 0.01)

(SNR = 7.33 dB) and t ∈ [0, ..., T − 1] with T = 30 (small
dataset). The noise level was chosen high to be conformed with
most of situations observed in in vivo and clinical trials. The
model parameters are gathered in θi = [ai,1 ai,2 bi,1]t. These
parameters are distributed according to a gaussian distribution
with a mean vector CiΥ and a diagonal covariance matrix
Ω describing the inter-individual variability matrix in each
group of subjects. Let ω2 = (ω2

a1 , ω
2
a2 , ω

2
b1

) denote the vector
composed of the diagonal entries of Ω, corresponding with the
random effects on the model parameters, i.e. the unexplained
intra-group variability. We set ω2

a1 = ω2
a2 = 0.001 and

ω2
b1

= 0.01. We have considered two groups of I1 = I2 = 20
subjects. The first group is used as reference and the number of
identifiable covariable effects is equal to ng = 1. Parameters
of the reference group are centered on aref ,1 = 0.7; aref ,2 =
0.01; bref ,1 = 1 and the ones of the second group are shifted
by quantities δag,1 = −0.2; δag,2 = 0.1; δbg,1 = 0.2. The
covariate matrix Ci is given by:

Ci =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , (36)

0 5 10 15 20 25 30

Time
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0.5
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Fig. 4: Example of a simulation dataset. Input signal (green);
output signals from group 1 (blue); output signals from group
2 (orange).

if the subject i belongs to the reference group; otherwise
(group 2), the expression of Ci becomes:

Ci =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 . (37)

The two elements of the vector of unknown parameters Υ are:

θ0 =
[
aref ,1, aref ,2, bref ,1

]t
(38)

β =
[
δag,1, δag,2, δbg,1

]t
. (39)

In (37), the content of the second block assumes that the
change of group can affect all the ARX model parameters.
A Kronecker pulse signal at t = 5 is chosen as input for all
subjects. Data are simulated with a constant sampling rate. The
same ARX model structure is used in the two identification
strategies (individually repeated vs population-based) to be
compared.

B. Results and discussion
1) Test on one dataset: A simulation dataset is shown in

Figure 4 and the corresponding estimates obtained with the
population-based identification method only are presented in
Table II. We note that the elements of Υ are well estimated
with low standard-errors, the same goes for σ2

e . About the
components of the covariance matrix Ω, we observe a slight
over-estimation of ω2 compared with the simulation values.
This behavior was expected because the resulting variance is
a combinaison of the true variance and the variance of the
estimates θi. The p-values clearly indicate that two parameters,
a1 and b1, are more likely to be affected by the group
covariable. The p-value for β2 is larger but is still significant,
emphasizing that the group factor also affects a2. These results
are coherent with the simulation set up since the offset for a2

was twice lower. The estimates for θ and β are also acceptable
compared with the simulation values. Moreover, the proposed
approach succeeded in detecting the real effects of the group
covariable.



BATISTA et al.: SEPTEMBER 2020 7

TABLE II: Estimation results of the population-based identification method applied to one input-output dataset shown in
Figure 4. SE is the standard error and RSE (%) is the relative standard error. Wald test p-values are also indicated to assess
which model parameters are affected by the change of group (covariable).

Parameters True Values Estimates SE RSE p-value

Υ̂

θ̂0,1 = âref ,1 0.6 0.6821 0.0414 6
θ̂0,2 = âref ,2 0.1 0.0963 0.0415 43
θ̂0,3 = b̂ref ,1 1 1.0012 0.0358 4
β̂1,1 = δâg,1 -0.2 -0.2039 0.0488 24 2.89e-05
β̂2,1 = δâg,2 0.1 0.1133 0.0489 43 0.0205
β̂3,1 = δb̂g,1 0.2 0.2169 0.0506 23 1.85e-05

ω̂2
ω̂2
a1

0.001 0.0026 0.00218 82
ω̂2
a2

0.001 0.0027 0.00228 84
ω̂2
b1

0.01 0.0151 0.00575 38
σ̂2
e 0.01 0.0103 0.00045 4

TABLE III: Relative bias (%) computed on 1000 datasets with
I = 10 and I = 100 using the individual and the population
ARX methods.

Θ̂
Bias (%)

I = 10 I = 100
Individual Population Individual Population

θ̂0

-1.104 -1.452 -1.164 -1.476
-14.106 -7.323 -12.483 -5.551
0.155 0.097 0.213 0.143

β̂
-0.647 -1.733 -1.015 -1.893
2.857 -0.304 0.158 -2.429
-2.931 -2.920 -0.575 -0.525

ω̂2
867.638 288.912 685.482 190.298
861.193 291.376 676.921 189.704
132.949 44.193 98.986 22.380

σ̂2
e -10.748 -5.080 -10.760 -4.089

2) Individual-ARX vs population-ARX: Figure 5 shows
estimates of the two competitive approaches applied to the
simulation dataset shown in Figure 4. We clearly observe a
larger dispersion of the estimates provided by the individual
ARX technique (in red). In contrast, the distributions of
the estimated parameters obtained with the population-based
method (yellow) are close to that of the simulated ones (blue).
Moreover, the population approach yields significantly lower
t-test p-values, emphasizing an increased statistical power of
the population-based identification method in comparison with
the individual one. As a result, when the datasets are small, the
population approach appears to be more effective in detecting
small effects caused by covariates.

3) Monte-Carlo simulations: In order to compare our pop-
ulation estimator with the reference individual estimator, we
computed the relative bias and the relative root mean square
error (RMSE) of the estimates from estimation on 1000
independent simulations of the model. Two cases were tested,
one with I = 10, and the other with I = 100 in order to assess
the impact of the sample size.

Table III and Table IV show respectively the relative bias
and the relative RMSE in percentage over 1000 input-output
datasets obtained with I = 10 and I = 100 subjects. We
observe that both methods exhibit a low bias on all the mean
parameters but this bias is lower for the population approach.
We mainly note that the population-based technique divides
by three the bias on ω2 and by two the bias on σ2

e compared

TABLE IV: Relative RMSE (%) computed on 1000 datasets
with I = 10 and I = 100 using basic ARX method and the
EM algorithm with hierarchical model

Θ̂
RMSE (%)

I = 10 I = 100
Individual Population Individual Population

θ̂0

5.663 5.611 2.156 2.312
42.406 39.811 17.796 13.568
4.586 4.563 1.384 1.367

β̂
27.129 26.604 8.307 8.285
54.789 53.804 15.975 15.876
80.159 80.002 9.743 9.696

ω̂2
1149.289 408.437 702.883 199.441
1167.671 423.010 693.312 199.053
200.200 106.922 102.780 30.596

σ̂2
e 11.190 5.773 10.808 4.190

with the individual procedure. The performance improvement
is of the same order of magnitude for the RMSE.

Concerning the effect of the sample size (I), increasing the
number of subjects seems not to affect the estimation bias on
θ0 and β but has a significant effect on their RMSE. However
the inflation of I allows to reduce the bias and RMSE on the
variance parameters.

Finally, the simulation variability is used over the 1000
simulation replicates to assess the true SE. Figure 6 shows the
histograms of the 1000 SE estimates on each parameter com-
pared to the true SE. values. For all parameters, the estimates
are close to the true values but they are always overestimated.
This result can be explained by the fact that θi is not measured
but estimated by the expectation of θi|yi in the EM algorithm.
Note that in the case of the individual identification method
these SE values are not available, rendering implementation
of the Wald test impossible.

VI. APPLICATION TO THE ANALYSIS OF GAP-FRAP DATA

Developed in the 70s, the Fluorescence Recovery After
Photobleaching (FRAP) technique is based on the progressive
increase of fluorescence intensity in a photobleaching area
obtained after illumination with a LASER beam. This widely
used method is principally dedicated to study fluorescent con-
stituents (as fluorescent chimeric protein) mobility in cellular
membranes and cytoplasm at microscopic scale [17]. Gap-
FRAP technique enlarges the FRAP technique to study the



8 TECHNICAL REPORT

True

Indi
vidu

al ARX

Popul
ation

ARX
0.3

0.4

0.5

0.6

0.7

0.8

0.9
a1

reference group
comparison group

(a) ai,1, t-test (ind): 1.27 · 10−7, t-test (pop):
2.13 · 10−23

True

Indi
vidu

al ARX

Popul
ation

ARX
-0.2

-0.1

0

0.1

0.2

0.3

0.4
a2

reference group
comparison group

(b) ai,2, t-test (ind): 2.30 · 10−3, t-test (pop):
1.24 · 10−14

True

Indi
vidu

al ARX

Popul
ation

ARX
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
b1

reference group
comparison group

(c) bi,1, t-test (ind): 1.40 · 10−4, t-test (pop):
1.77 · 10−7

Fig. 5: Dispersions of the estimates for two identification
approaches (individual ARX in red vs population ARX in
yellow), compared to true parameters (blue). Two groups of
parameters: (∗) reference group; (◦) comparison group.

Fig. 6: Histograms of the SE estimates (%) on all parameters
over the 1000 simulation with I = 100. The red line corre-
sponds to the true SE.

Fig. 7: Illustration of the fluorescent molecules transfers
through GJIC. In grey the photobleached area, in light green
the intermediate area and in dark green the intact area.

functionality of Gap Junctional Intercellular Communication
(GJIC) channels in vitro [28] according to an experimental
protocol illustrated in Figure 7. GLIC is the mainly form for
direct contact between cytoplasms of adjacent cells. Each gap
junction is made of twelve protein sub-units called connexins
(Cx). The Cx family is composed of 21 types of proteins clas-
sified according to their molecular weight [22]. It is assumed
that GJIC is of great importance in regulation of development,
differentiation and growth. Actually, several physiological
roles characterize them, including electrical coupling, answer
of tissues to hormones, regulation of embryonic development,
the homeostasis and the balance of the cellular proliferation.
GJIC is also partially implicated in resistance in drugs and
ionizing radiation by contact effect between tumor cells in
multicellular 3-dimensional culture [20]. As a consequence the
characterization of GJIC functionality is a challenging appli-
cation for the determination of new biomarkers in medicine.
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In [24], authors demonstrated the efficiency of system
identification methods to describe GJIC dynamics from exper-
imental data but the proposed procedure required to be applied
to each cell culture individually. This study case is thus a good
example to test our population-based system identification
method. We used an ARX model form with the following
structural indices: na = nb = nd = 1:

(1− aiq−1) Yi(t)|θi = bi u(t− 1) + Ei(t). (40)

The input variable u(t) is a step signal corresponding to the
LASER switch-off period. bi is a gain between the output
and input variables while ai is the pole of the first-order
transfer function. The vector of unknown ARX parameters is:
θi = [ai, bi]

t. We wish to test the effects of two independent
covariables (ng = 2) on the two previous model parameters:
• ci,1 is the cell type. Two head and neck cancer cell lines:

KB cells and FaDu cells were used. KB cells (positive
line) are known to express Cx43 proteins responsible of
GJIC unlike FaDu cells (negative line). This knowledge
is used to test the ability of our data-driven modeling
approach to detect this property;

• ci,2 is the type of in vitro culture (monolayer vs spheroid)
with the objective to test whether or not this factor
influences the in vitro response.

Each of the two cofactors takes two modalities. As a
consequence, the total number of identifiable parameters in
the top layer model is equal to ng = 2. The structure of the
mixed-effect model is defined as follows:

θi,j = θ0,j + βj,1ci,1 + βj,2ci,2 +Wi,j , (41)

for the j-th parameter of θi, with j ∈ {1, 2}. To estimate
the hyperparameters of the top layer model, a 22 full factorial
design of experiments was carried out and each of the four
experimental conditions was repeated six times, i.e. I = 24
individual responses to be analyzed. Among the four main
groups of experiments, one is used as reference and corre-
sponds to the FaDu cell line in monolayer (2D) culture. Each
Gap-FRAP assay takes 900s and is recorded with a sampling
period of 15s, i.e. T = 60 time samples for each response. For
more details about the experimental set up, the reader is invited
to refer to [24]. The distribution of individual parameters are
supposed to be Gaussian with a mean value given by: CiΥ.
The upper part of Υ is composed of parameters associated with
the reference group: aref and bref . The other elements of Υ
are the effects (deviations from the reference group) induced
by the two covariables (ci,1, ci,2) on the two model parameters
(bi, ai):

Υ =


θ0,1

θ0,2

β1,1

β2,1

β1,2

β2,2

 =


aref
bref
δaKB
δbKB

δaSPHERO
δbSPHERO

 . (42)

The matrix Ci is organized in three blocks of two columns:

Ci =

[
1 0 1 0 1 0
0 1 0 1 0 1

]
. (43)

TABLE V: Results of the population-based system identifica-
tion method applied to Gap-FRAP data

Parameters Estimates SE RSE (%) p-value

Υ

θ0,2 0.9299 0.0075 1
θ0,1 0.0083 0.0007 9
β1,1 0.0615 0.0103 17 2.05e-09
β2,1 -0.0079 0.0010 12 2.25e-16
β1,2 0.0014 0.0095 682 0.883
β2,2 -0.0007 0.0009 123 0.417

ω2 0.00039 0.000159 41
3.706e-06 1.212e-06 33

σ2
e 6.12e-07 2.64e-08 4

The first block corresponds to the reference group (FaDu-
monolayer). The other two blocks indicate the presence of
effects (coded by 1) between the two culture covariables
(ci,1 = KB, ci,2 = SPHERO) on the model parameters. As
a reminder, the number of rows in Ci coincides to the number
of ARX model parameters that could be affected by the studied
covariables. The estimation results are presented in Table V.
For the reference group, we observe a low gain and a pole
close to one. Values of β1,1 = δaKB and β2,1 = δbKB
are clearly different from zero but this is not the case for
β1,2 = δaSPHERO and β2,2 = δbSPHERO. Those observations are
confirmed by the respective p-values. It confirms the two cell
lines have two distinct dynamics and influence both parameters
of the ARX model as illustrated in Figures 10 and 9. By
contrast, the type of culture (2D vs 3D) does not significantly
affect the in vitro responses.

Fig. 8: Individual measured responses (thin lines) and popula-
tion responses (bold lines) of the ARX model for each group.

VII. DISCUSSION

The main advantage of the ARX structure is that it is ex-
pressed linearly with respect to the model parameters through
the matrix Φi. This allows to write the model such as :{

yi|θi ∼ N (Φiθi, σ
2
e)

θi ∼ N (CiΥ,Ω),
(44)

where Φi is composed of known input-output signals, even if
yi is a stochastic variable, its realizations are known. The ARX
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Fig. 9: Distribution of a. Blue: estimated distribution for the
reference group: FaDu-monolayer. Red: mean values and 95%
uncertainty intervals for the spheroid effect (β1,2 = δaSPHERO)
and KB effect (β1,1 = δaKB).

Fig. 10: Distribution of b. Blue: estimated distribution for the
reference group: FaDu-monolayer. Red: mean values and 95%
uncertainty intervals for the spheroid effect (β2,2 = δbSPHERO)
and KB effect (β2,1 = δbKB).

structure is the only model with this property. Indeed, only
the polynomials A(q) and B(q) are composed of regressors
completely known. ΦA,i is composed of past values of yi while
ΦB,i contains current and past values of ui. All other structures
involved in the Box-Jenkins model sketched in Figure 11 are
composed by at least one of polynomials C(q), D(q) or F (q)
and their respective matrices ΦC,i(θi), ΦD,i(θi) and ΦD,i(θi).
In this case, it becomes impossible to express θi|yi as a linear
function of θi|yi with respect to yi, which is necessary in the
expectation step of the expectation-maximization algorithm.
Accordingly, the challenge is to develop statistical tools able
to sample stochastic variables distributed according to non-
trivial probability functions such as the MCMC algorithm. One
promising solution is the adaptation of the EM algorithm with
the stochastic approximation of the E-step, called SAEM [15].

B(q)
F (q)

C(q)
D(q)

u(k) w(k)

v(k)

e(k)

y(k)

Fig. 11: Block diagram of the Box-Jenkins structure

VIII. CONCLUSION

A population-based identification method was developed,
implemented and evaluated in this paper. The proposed ap-
proach relies on a hierarchical representation composed of an
ARX model structure at a low level to describe the input-
output dynamics and a normal distribution law at a higher
level to characterize the inter-individual dispersion between
the systems. An EM (Expectation-Maximisation) algorithm is
used to estimate the model parameters and their uncertainty is
computed from the Fisher information matrix. For the analysis
of input-output data provided by screening studies in biology,
categorial covariables have been introduced in the hierarchical
representation and two statistical tests were proposed to assess
the effects of covariables on the input-output dynamics.

Several simulations were carried out and have emphasized
the practical relevance of the population-based identification
method. We clearly show that the proposed estimation ap-
proach significantly reduces the estimation errors in terms of
bias and variance. Moreover, compared with a classical system
identification procedure repeatedly applied to each individual
system, the new approach drastically increases the statistical
power of tests and is therefore able to detect smaller effects
of covariables. This is a significant competitive advantage to
analyse data from in vitro screening studies.

The proposed identification method was finally applied to
in vitro data obtained from Gap-FRAP tests. Results not only
shows the applicability of the proposed approach but also
the easy interpretation of results. As short-term perspectives,
we are currently working on the extension of the population
approach to other model structures, such as output-error and
Box-Jenkins models, that are suited to describe more complex
dynamics.
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